½ÃÀ庸°í¼­
»óÇ°ÄÚµå
1279670

¼¼°èÀÇ E-Commerce¿ë ºòµ¥ÀÌÅÍ ½ÃÀå ±Ô¸ð Á¶»ç ¹× ¿¹Ãø : ÄÄÆ÷³ÍÆ®º°, Àü°³º°, À¯Çüº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº° ºÐ¼®(2022-2029³â)

Global Big Data in E-commerce Market Size study & Forecast, by Component, by Deployment, by Type, by End-use and Regional Analysis, 2022-2029

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Bizwit Research & Consulting LLP | ÆäÀÌÁö Á¤º¸: ¿µ¹® | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡Ø º» »óÇ°Àº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

E-Commerce ½ÃÀå¿¡¼­ ºòµ¥ÀÌÅÍ´Â ¿Â¶óÀÎ °Å·¡, °í°´°úÀÇ »óÈ£ ÀÛ¿ë ¹× ±âŸ µðÁöÅÐ ¼Ò½º¿¡¼­ »ý¼ºµÇ´Â ¹æ´ëÇÏ°í º¹ÀâÇÑ ±¸Á¶È­ ¹× ºñ±¸Á¶È­µÈ µ¥ÀÌÅÍ ÁýÇÕÀ» ÀǹÌÇÕ´Ï´Ù.

±âŸ È°µ¿¿¡´Â °í°´ Çൿ, ¼±È£µµ, ±¸¸Å ³»¿ª, À¥»çÀÌÆ® Æ®·¡ÇÈ, ¼Ò¼È ¹Ìµð¾î È°µ¿ µîÀÌ Æ÷ÇԵ˴ϴÙ. ¼¼°è E-Commerce¿ë ºòµ¥ÀÌÅÍ ½ÃÀåÀÇ ÁÖ¿ä µ¿ÀÎÀº µ¥ÀÌÅÍ »ý¼º·® Áõ°¡¿Í °³ÀÎÈ­µÈ ¼îÇÎ °æÇè¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡ÀÔ´Ï´Ù.

¼¼°è °¢±¹ Á¤ºÎ´Â E-Commerce¿ë ºòµ¥ÀÌÅÍ È°¿ëÀ» Áö¿øÇÏ¿© ±¹³»ÀÇ µðÁöÅÐÈ­¸¦ ÃËÁøÇÏ°í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, 2019³â È£ÁÖ Á¤ºÎ´Â 'µðÁöÅÐ °æÁ¦ Àü·«'À» ¹ßÇ¥ÇÏ¿© ºòµ¥ÀÌÅÍ ÀÎÇÁ¶ó ±¸ÃàÀ» ÃËÁøÇÏ°í E-Commerce ½ÃÀåÀ» Æ÷ÇÔÇÑ ´Ù¾çÇÑ »ê¾÷¿¡¼­ ºòµ¥ÀÌÅÍ È°¿ëÀ» ÃËÁøÇÏ´Â °èȹÀ» Æ÷ÇÔ½ÃÄ×½À´Ï´Ù. ¶ÇÇÑ, ±â¼ú ¹ßÀü°ú E-Commerce¿ë ºòµ¥ÀÌÅÍ µµÀÔ¿¡ ´ëÇÑ Á¤ºÎÀÇ Áö¿ø Áõ°¡´Â 2022-2029³â ¿¹Ãø ±â°£ µ¿¾È ½ÃÀå¿¡ À¯¸®ÇÑ ¼ºÀå ±âȸ¸¦ âÃâÇÏ°í ÀÖ½À´Ï´Ù. ±×·¯³ª E-Commerce¿ë ºòµ¥ÀÌÅÍÀÇ ³ôÀº ºñ¿ëÀº 2022-2029³â ¿¹Ãø ±â°£ µ¿¾È ½ÃÀå ¼ºÀåÀ» ÀúÇØÇÏ´Â ¿äÀÎÀ¸·Î ÀÛ¿ëÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

E-Commerce¿ë ºòµ¥ÀÌÅÍ ¼¼°è ½ÃÀå Á¶»ç¿¡¼­ °í·ÁµÈ ÁÖ¿ä Áö¿ªÀº ¾Æ½Ã¾ÆÅÂÆò¾ç, ºÏ¹Ì, À¯·´, Áß³²¹Ì ¹× ±âŸ Áö¿ªÀÔ´Ï´Ù. ºÏ¹Ì´Â E-Commerce¿ë ºòµ¥ÀÌÅÍ µµÀÔ°ú °ü·ÃÇÏ¿© ÁÖ¿ä Áö¿ª Áß ÇϳªÀÔ´Ï´Ù. ÀÌ Áö¿ª¿¡´Â °í°´ÀÇ Çൿ, ¼±È£µµ, ±¸¸Å ÆÐÅÏ¿¡ ´ëÇÑ ÀλçÀÌÆ®¸¦ ¾ò±â À§ÇØ ºòµ¥ÀÌÅÍ ºÐ¼®¿¡ ¸¹Àº ÅõÀÚ¸¦ ÇÏ°í ÀÖ´Â ±âÁ¸ E-Commerce ¾÷üµéÀÌ ¸¹ÀÌ ÀÖ½À´Ï´Ù. ¶ÇÇÑ ºòµ¥ÀÌÅÍ´Â °ø±Þ¸Á °ü¸® °³¼±, °¡°Ý Àü·« ÃÖÀûÈ­, Àü¹ÝÀûÀÎ °í°´ °æÇè °­È­¿¡µµ È°¿ëµÇ°í ÀÖ½À´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾çÀº E-Commerce¿ë ºòµ¥ÀÌÅÍ µµÀÔ Ãø¸é¿¡¼­ ºü¸£°Ô Ãß°ÝÇÏ°í ÀÖ½À´Ï´Ù. ¾Ë¸®¹Ù¹Ù, JD.com, Çø³Ä«Æ®(Flipkart) µî ±Þ¼ºÀåÇÏ°í ÀÖ´Â ÀÌÄ¿¸Ó½º ±â¾÷µéÀÌ ºòµ¥ÀÌÅ͸¦ È°¿ëÇØ °æÀï·ÂÀ» ³ôÀÌ°í ÀÖ½À´Ï´Ù. ºòµ¥ÀÌÅÍ´Â »óÇ° Ãßõ °³¼±, ¸¶ÄÉÆà ķÆäÀÎ °³ÀÎÈ­, °¡°Ý Àü·« ÃÖÀûÈ­ µî¿¡ È°¿ëµÇ°í ÀÖ½À´Ï´Ù.

ÀÌ Á¶»çÀÇ ¸ñÀûÀº ÃÖ±Ù ¸î ³â µ¿¾È ´Ù¾çÇÑ ºÎ¹®°ú ±¹°¡ÀÇ ½ÃÀå ±Ô¸ð¸¦ ÆľÇÇÏ°í ÇâÈÄ ¸î ³â µ¿¾È ½ÃÀå ±Ô¸ð¸¦ ¿¹ÃøÇÏ´Â °ÍÀÔ´Ï´Ù. ÀÌ º¸°í¼­´Â Á¶»ç ´ë»ó ±¹°¡ÀÇ »ê¾÷ÀÇ ÁúÀû, ¾çÀû Ãø¸éÀ» ¸ðµÎ Æ÷ÇÔÇϵµ·Ï ¼³°èµÇ¾ú½À´Ï´Ù.

¶ÇÇÑ ½ÃÀåÀÇ ¹Ì·¡ ¼ºÀåÀ» ±ÔÁ¤ÇÏ´Â ÃËÁø¿äÀΰú °úÁ¦ µî Áß¿äÇÑ Ãø¸é¿¡ ´ëÇÑ ÀÚ¼¼ÇÑ Á¤º¸µµ Á¦°øÇÕ´Ï´Ù. ¶ÇÇÑ, °æÀï ȯ°æ°ú ÁÖ¿ä ±â¾÷ÀÇ °æÀï »óȲ¿¡ ´ëÇÑ »ó¼¼ÇÑ ºÐ¼®°ú ÇÔ²² ÀÌÇØ°ü°èÀÚ°¡ ÅõÀÚÇÒ ¼ö ÀÖ´Â ¹Ì½ÃÀû ½ÃÀå¿¡¼­ÀÇ ÀáÀçÀû ±âȸµµ Æ÷ÇÔÇÕ´Ï´Ù.

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

  • ½ÃÀå ÇöȲ
  • ¼¼°è ½ÃÀ塤ºÎ¹®º° ½ÃÀå ÃßÁ¤°ú ¿¹Ãø, 2019-2029³â
    • E-Commerce¿ë ºòµ¥ÀÌÅÍ ½ÃÀå, Áö¿ªº°, 2019-2029³â
    • E-Commerce¿ë ºòµ¥ÀÌÅÍ ½ÃÀå : ÄÄÆ÷³ÍÆ®º°, 2019-2029³â
    • E-Commerce¿ë ºòµ¥ÀÌÅÍ ½ÃÀå : Àü°³º°, 2019-2029³â
    • E-Commerce¿ë ºòµ¥ÀÌÅÍ ½ÃÀå : À¯Çüº°, 2019-2029³â
    • E-Commerce¿ë ºòµ¥ÀÌÅÍ ½ÃÀå : ÃÖÁ¾»ç¿ëº°, 2019-2029³â
  • ÁÖ¿ä µ¿Çâ
  • Á¶»ç ¹æ¹ý
  • Á¶»ç °¡Á¤

Á¦2Àå E-Commerce¿ë ºòµ¥ÀÌÅÍ ¼¼°è ½ÃÀå Á¤ÀÇ¿Í ¹üÀ§

  • Á¶»ç ¸ñÀû
  • ½ÃÀå Á¤ÀÇ¿Í ¹üÀ§
    • º» Á¶»çÀÇ ´ë»ó ¹üÀ§
    • »ê¾÷ ÁøÈ­
  • º» Á¶»çÀÇ ´ë»ó ¿¬µµ
  • ÅëÈ­ ȯ»êÀ²

Á¦3Àå ¼¼°èÀÇ E-Commerce¿ë ºòµ¥ÀÌÅÍ ½ÃÀå ¿ªÇÐ

  • E-Commerce¿ë ºòµ¥ÀÌÅÍ ½ÃÀå ¿µÇ⠺м®(2019-2029³â)
    • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
      • µ¥ÀÌÅÍ »ý¼º Áõ°¡
      • ¸ÂÃãÈ­µÈ ¼îÇÎ °æÇè¿¡ ´ëÇÑ ¼ö¿ä »ó½Â
    • ½ÃÀå °úÁ¦
      • E-Commerce¿ë ºòµ¥ÀÌÅÍÀÇ °íºñ¿ëÈ­
    • ½ÃÀå ±âȸ
      • ±â¼úÀûÀÎ Áøº¸
      • Á¤ºÎ Áö¿ø °­È­

Á¦4Àå ¼¼°èÀÇ E-Commerce¿ë ºòµ¥ÀÌÅÍ ½ÃÀå »ê¾÷ ºÐ¼®

  • Porter's 5 Force ¸ðµ¨
    • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
    • ±¸¸ÅÀÚÀÇ ±³¼··Â
    • ½Å±Ô Âü¿©¾÷üÀÇ À§Çù
    • ´ëüǰÀÇ À§Çù
    • °æÀï ±â¾÷°£ °æÀï °ü°è
  • Porter's 5 Force ¸ðµ¨ÀÇ ¹Ì·¡ÁöÇâÀû Á¢±Ù¹ý(2019-2029³â)
  • PEST ºÐ¼®
    • Á¤Ä¡Àû
    • °æÁ¦Àû
    • »çȸÀû
    • ±â¼úÀû
  • ÅõÀÚ Ã¤¿ë ¸ðµ¨
  • ¾Ö³Î¸®½ºÆ®ÀÇ °á·Ð°ú Á¦¾È
  • ž Ŭ·¡½º ÅõÀÚ ±âȸ
  • ÁÖ¿ä ¼º°ø Àü·«

Á¦5Àå À§Çè Æò°¡ : COVID-19ÀÇ ¿µÇâ

  • COVID-19°¡ ¾÷°è¿¡ ¹ÌÄ¡´Â ÀüüÀûÀÎ ¿µÇâ¿¡ ´ëÇÑ Æò°¡
  • COVID-19 ÀÌÀü°ú COVID-19 ÀÌÈÄ ½ÃÀå ½Ã³ª¸®¿À

Á¦6Àå ¼¼°èÀÇ E-Commerce¿ë ºòµ¥ÀÌÅÍ ½ÃÀå, ÄÄÆ÷³ÍÆ®º°

  • ½ÃÀå ÇöȲ
  • E-Commerce¿ë ºòµ¥ÀÌÅÍ ¼¼°è ½ÃÀå : ÄÄÆ÷³ÍÆ®º°), ½ÇÀû - ÀáÀ缺 ºÐ¼®
  • E-Commerce¿ë ºòµ¥ÀÌÅÍ ¼¼°è ½ÃÀå, ÄÄÆ÷³ÍÆ®º° ÃßÁ¤¡¤¿¹Ãø 2019-2029
  • E-Commerce¿ë ºòµ¥ÀÌÅÍ ½ÃÀå, ÇÏÀ§ ºÎ¹®º° ºÐ¼®
    • E-Commerce¿ë ºòµ¥ÀÌÅÍ¡¤¼ÒÇÁÆ®¿þ¾î
    • E-Commerce¿ë ºòµ¥ÀÌÅÍ Çϵå¿þ¾î

Á¦7Àå E-Commerce¿ë ºòµ¥ÀÌÅÍ ¼¼°è ½ÃÀå : Àü°³º°

  • ½ÃÀå ÇöȲ
  • E-Commerce¿ë ºòµ¥ÀÌÅÍ ¼¼°è ½ÃÀå : Àü°³º°, ½ÇÀû - ÀáÀ缺 ºÐ¼®
  • E-Commerce¿ë ºòµ¥ÀÌÅÍ ¼¼°è ½ÃÀå, Àü°³º° ÃßÁ¤¡¤¿¹Ãø 2019-2029
  • E-Commerce¿ë ºòµ¥ÀÌÅÍ ½ÃÀå, ÇÏÀ§ ºÎ¹®º° ºÐ¼®
    • Ŭ¶ó¿ìµå
    • ¿ÂÇÁ·¹¹Ì½º

Á¦8Àå E-Commerce¿ë ºòµ¥ÀÌÅÍ ¼¼°è ½ÃÀå, À¯Çüº°

  • ½ÃÀå ÇöȲ
  • E-Commerce¿ë ºòµ¥ÀÌÅÍ ¼¼°è ½ÃÀå : À¯Çüº°, ½ÇÀû - ÀáÀ缺 ºÐ¼®
  • E-Commerce¿ë ºòµ¥ÀÌÅÍ ¼¼°è ½ÃÀå, À¯Çüº° ÃßÁ¤¡¤¿¹Ãø 2019-2029
  • E-Commerce¿ë ºòµ¥ÀÌÅÍ ½ÃÀå, ÇÏÀ§ ºÎ¹®º° ºÐ¼®
    • E-CommerceÀÇ ±¸Á¶È­µÈ ºòµ¥ÀÌÅÍ
    • E-CommerceÀÇ ºñ±¸Á¶È­ ºòµ¥ÀÌÅÍ
    • E-CommerceÀÇ ¹Ý±¸Á¶È­ ºòµ¥ÀÌÅÍ

Á¦9Àå E-Commerce¿ë ºòµ¥ÀÌÅÍ ¼¼°è ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • ½ÃÀå ÇöȲ
  • E-Commerce¿ë ºòµ¥ÀÌÅÍ ¼¼°è ½ÃÀå : ÃÖÁ¾»ç¿ëº°, ½ÇÀû - ÀáÀ缺 ºÐ¼®
  • E-Commerce¿ë ºòµ¥ÀÌÅÍ ¼¼°è ½ÃÀå, ÃÖÁ¾»ç¿ëº° ÃßÁ¤¡¤¿¹Ãø 2019-2029
  • E-Commerce¿ë ºòµ¥ÀÌÅÍ ½ÃÀå, ÇÏÀ§ ºÎ¹®º° ºÐ¼®
    • E-CommerceÀÇ ¿Â¶óÀÎ Å©¶ó½ÃÆÄÀ̵å
    • ¿Â¶óÀÎ ±³À°
    • ¿Â¶óÀÎ ±ÝÀ¶
    • ¿Â¶óÀÎ ¼Ò¸Å¾÷
    • ¿Â¶óÀÎ ¿©Çࡤ·¹Àú
    • ±âŸ ÃÖÁ¾»ç¿ë

Á¦10Àå E-Commerce¿ë ºòµ¥ÀÌÅÍ ¼¼°è ½ÃÀå : Áö¿ªº° ºÐ¼®

  • E-Commerce¿ë ºòµ¥ÀÌÅÍ ½ÃÀå, Áö¿ªº° ½ÃÀå ÇöȲ
  • ºÏ¹Ì
    • ¹Ì±¹
      • ÄÄÆ÷³ÍÆ®º° ÃßÁ¤¡¤¿¹Ãø, 2019-2029³â
      • Àü°³º° ÃßÁ¤¡¤¿¹Ãø, 2019-2029³â
      • À¯Çüº° ÃßÁ¤¡¤¿¹Ãø, 2019-2029³â
      • ÃÖÁ¾»ç¿ëº° ÃßÁ¤¡¤¿¹Ãø, 2019-2029³â
    • ij³ª´Ù
  • À¯·´ÀÇ E-Commerce¿ë ºòµ¥ÀÌÅÍ ½ÃÀå ÇöȲ
    • ¿µ±¹
    • µ¶ÀÏ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ÀÌÅ»¸®¾Æ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ E-Commerce¿ë ºòµ¥ÀÌÅÍ ½ÃÀå ÇöȲ
    • Áß±¹
    • Àεµ
    • ÀϺ»
    • È£ÁÖ
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ¶óƾ¾Æ¸Þ¸®Ä«ÀÇ E-Commerce¿ë ºòµ¥ÀÌÅÍ ½ÃÀå ÇöȲ
    • ºê¶óÁú
    • ¸ß½ÃÄÚ
  • ¼¼°è ±âŸ Áö¿ª

Á¦11Àå °æÀï Á¤º¸

  • ÁÖ¿ä ½ÃÀå Àü·«
  • ±â¾÷ °³¿ä
    • Amazon Web Services, Inc.
      • ÁÖ¿ä Á¤º¸
      • °³¿ä
      • À繫 Á¤º¸(µ¥ÀÌÅÍ Á¦°ø °¡´ÉÇÑ °æ¿ì¿¡ ÇÑÇÔ)
      • Á¦Ç° °³¿ä
      • ÃÖ±ÙÀÇ °³¹ß »óȲ
    • Data Inc.
    • Dell Inc.
    • Facebook
    • Hitachi, Ltd.
    • International Business Machines Corporation
    • Microsoft Corp.
    • Oracle Corp.
    • Palantir Technologies, Inc.
    • SAS Institute Inc.

Á¦12Àå Á¶»ç °úÁ¤

  • Á¶»ç °úÁ¤
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • ºÐ¼®
    • ½ÃÀå ÃßÁ¤
    • ½ÂÀÎ
    • ÃâÆÇ
  • Á¶»ç Ư¡
  • Á¶»ç °¡Á¤
ksm 23.06.07

Global Big Data in E-commerce Market is valued at approximately USD XX billion in 2021 and is anticipated to grow with a healthy growth rate of more than XX% over the forecast period 2022-2029. In the e-commerce market, Big Data refers to the vast and complex sets of structured and unstructured data generated by online transactions, customer interactions, and other digital sources. This data includes customer behavior, preferences, purchase history, website traffic, and social media activity, among others. The major driving factor for the Global Big Data in E-commerce Market is increased data generation and growing demand for personalized shopping experiences.

The government around the world is supporting the use of big data in e-commerce and excelling the digitalization in the country. For instance, in 2019, the Australian government launched the "Digital Economy Strategy," which includes plans to promote the development of Big Data infrastructure and promote the use of Big Data in various industries, including the E-commerce market. Moreover, technological advancements and rising government support for the adoption of big data in e-commerce is creating a lucrative growth opportunity for the market over the forecast period 2022-2029. However, the high cost of Big Data in E-commerce stifles market growth throughout the forecast period of 2022-2029.

The key regions considered for the Global Big Data in E-commerce Market study includes Asia Pacific, North America, Europe, Latin America, and Rest of the World. North America is one of the leading regions when it comes to the adoption of Big Data in e-commerce. The region has a large number of established e-commerce players who have invested heavily in Big Data analytics to gain insights into customer behavior, preferences, and purchasing patterns. Big Data is also being used to improve supply chain management, optimize pricing strategies, and enhance the overall customer experience. The Asia-Pacific region is rapidly catching up in terms of Big Data adoption in e-commerce. The region has many fast-growing e-commerce companies such as Alibaba, JD.com, and Flipkart which are using Big Data to gain a competitive edge. Big Data is being used to improve product recommendations, personalize marketing campaigns, and optimize pricing strategies.

Major market players included in this report are:

  • Amazon Web Services, Inc.
  • Data Inc.
  • Dell Inc.
  • Facebook
  • Hitachi, Ltd.
  • International Business Machines Corporation
  • Microsoft Corp.
  • Oracle Corp.
  • Palantir Technologies, Inc.
  • SAS Institute Inc.

Recent Developments in the Market:

  • In July 2020, Shopify launched a new feature called Shopify Balance, which uses big data to help small business owners manage their finances and cash flow more effectively.
  • In January 2020, Zara's parent company Inditex announced plans to use big data and artificial intelligence to improve its supply chain operations and reduce waste.

Global Big Data in E-commerce Market Report Scope:

  • Historical Data: 2019-2020-2021
  • Base Year for Estimation: 2021
  • Forecast period: 2022-2029
  • Report Coverage: Revenue forecast, Company Ranking, Competitive Landscape, Growth factors, and Trends
  • Segments Covered: Component, Deployment, Type, End-use, Region
  • Regional Scope: North America; Europe; Asia Pacific; Latin America; Rest of the World
  • Customization Scope: Free report customization (equivalent up to 8 analyst's working hours) with purchase. Addition or alteration to country, regional & segment scope*

The objective of the study is to define market sizes of different segments & countries in recent years and to forecast the values to the coming years. The report is designed to incorporate both qualitative and quantitative aspects of the industry within countries involved in the study.

The report also caters detailed information about the crucial aspects such as driving factors & challenges which will define the future growth of the market. Additionally, it also incorporates potential opportunities in micro markets for stakeholders to invest along with the detailed analysis of competitive landscape and Component offerings of key players. The detailed segments and sub-segment of the market are explained below.

By Component:

  • Big Data Software in the E-commerce
  • Big Data Hardware in the E-commerce

By Deployment:

  • Cloud-based
  • On-premises

By Type:

  • Structured Big Data in the E-commerce
  • Unstructured Big Data in the E-commerce
  • Semi-structured Big Data in the E-commerce

By End-use:

  • Online Classifieds in the E-commerce
  • Online Education
  • Online Financials
  • Online Retail
  • Online Travel and Leisure
  • Other End Uses

By Region:

  • North America
  • U.S.
  • Canada
  • Europe
  • UK
  • Germany
  • France
  • Spain
  • Italy
  • ROE
  • Asia Pacific
  • China
  • India
  • Japan
  • Australia
  • South Korea
  • RoAPAC
  • Latin America
  • Brazil
  • Mexico
  • Rest of the World

Table of Contents

Chapter 1. Executive Summary

  • 1.1. Market Snapshot
  • 1.2. Global & Segmental Market Estimates & Forecasts, 2019-2029 (USD Billion)
    • 1.2.1. Big Data in E-commerce Market, by Region, 2019-2029 (USD Billion)
    • 1.2.2. Big Data in E-commerce Market, by Component, 2019-2029 (USD Billion)
    • 1.2.3. Big Data in E-commerce Market, by Deployment, 2019-2029 (USD Billion)
    • 1.2.4. Big Data in E-commerce Market, by Type, 2019-2029 (USD Billion)
    • 1.2.5. Big Data in E-commerce Market, by End-use, 2019-2029 (USD Billion)
  • 1.3. Key Trends
  • 1.4. Estimation Methodology
  • 1.5. Research Assumption

Chapter 2. Global Big Data in E-commerce Market Definition and Scope

  • 2.1. Objective of the Study
  • 2.2. Market Definition & Scope
    • 2.2.1. Scope of the Study
    • 2.2.2. Industry Evolution
  • 2.3. Years Considered for the Study
  • 2.4. Currency Conversion Rates

Chapter 3. Global Big Data in E-commerce Market Dynamics

  • 3.1. Big Data in E-commerce Market Impact Analysis (2019-2029)
    • 3.1.1. Market Drivers
      • 3.1.1.1. Increased Data Generation
      • 3.1.1.2. Growing demand for personalized shopping experiences
    • 3.1.2. Market Challenges
      • 3.1.2.1. High Cost of Big Data in E-commerce
    • 3.1.3. Market Opportunities
      • 3.1.3.1. Technological Advancements
      • 3.1.3.2. Rising Government Support

Chapter 4. Global Big Data in E-commerce Market Industry Analysis

  • 4.1. Porter's 5 Force Model
    • 4.1.1. Bargaining Power of Suppliers
    • 4.1.2. Bargaining Power of Buyers
    • 4.1.3. Threat of New Entrants
    • 4.1.4. Threat of Substitutes
    • 4.1.5. Competitive Rivalry
  • 4.2. Futuristic Approach to Porter's 5 Force Model (2019-2029)
  • 4.3. PEST Analysis
    • 4.3.1. Political
    • 4.3.2. Economical
    • 4.3.3. Social
    • 4.3.4. Technological
  • 4.4. Investment Adoption Model
  • 4.5. Analyst Recommendation & Conclusion
  • 4.6. Top investment opportunity
  • 4.7. Top winning strategies

Chapter 5. Risk Assessment: COVID-19 Impact

  • 5.1. Assessment of the overall impact of COVID-19 on the industry
  • 5.2. Pre COVID-19 and post COVID-19 Market scenario

Chapter 6. Global Big Data in E-commerce Market, by Component

  • 6.1. Market Snapshot
  • 6.2. Global Big Data in E-commerce Market by Component, Performance - Potential Analysis
  • 6.3. Global Big Data in E-commerce Market Estimates & Forecasts by Component 2019-2029 (USD Billion)
  • 6.4. Big Data in E-commerce Market, Sub Segment Analysis
    • 6.4.1. Big Data Software in the E-commerce
    • 6.4.2. Big Data Hardware in the E-commerce

Chapter 7. Global Big Data in E-commerce Market, by Deployment

  • 7.1. Market Snapshot
  • 7.2. Global Big Data in E-commerce Market by Deployment, Performance - Potential Analysis
  • 7.3. Global Big Data in E-commerce Market Estimates & Forecasts by Deployment 2019-2029 (USD Billion)
  • 7.4. Big Data in E-commerce Market, Sub Segment Analysis
    • 7.4.1. Cloud-based
    • 7.4.2. On-premises

Chapter 8. Global Big Data in E-commerce Market, by Type

  • 8.1. Market Snapshot
  • 8.2. Global Big Data in E-commerce Market by Type, Performance - Potential Analysis
  • 8.3. Global Big Data in E-commerce Market Estimates & Forecasts by Type 2019-2029 (USD Billion)
  • 8.4. Big Data in E-commerce Market, Sub Segment Analysis
    • 8.4.1. Structured Big Data in the E-commerce
    • 8.4.2. Unstructured Big Data in the E-commerce
    • 8.4.3. Semi-structured Big Data in the E-commerce

Chapter 9. Global Big Data in E-commerce Market, by End-use

  • 9.1. Market Snapshot
  • 9.2. Global Big Data in E-commerce Market by End-use, Performance - Potential Analysis
  • 9.3. Global Big Data in E-commerce Market Estimates & Forecasts by End-use 2019-2029 (USD Billion)
  • 9.4. Big Data in E-commerce Market, Sub Segment Analysis
    • 9.4.1. Online Classifieds in the E-commerce
    • 9.4.2. Online Education
    • 9.4.3. Online Financials
    • 9.4.4. Online Retail
    • 9.4.5. Online Travel and Leisure
    • 9.4.6. Other End Uses

Chapter 10. Global Big Data in E-commerce Market, Regional Analysis

  • 10.1. Big Data in E-commerce Market, Regional Market Snapshot
  • 10.2. North America Big Data in E-commerce Market
    • 10.2.1. U.S. Big Data in E-commerce Market
      • 10.2.1.1. Component breakdown estimates & forecasts, 2019-2029
      • 10.2.1.2. Deployment breakdown estimates & forecasts, 2019-2029
      • 10.2.1.3. Type breakdown estimates & forecasts, 2019-2029
      • 10.2.1.4. End-use breakdown estimates & forecasts, 2019-2029
    • 10.2.2. Canada Big Data in E-commerce Market
  • 10.3. Europe Big Data in E-commerce Market Snapshot
    • 10.3.1. U.K. Big Data in E-commerce Market
    • 10.3.2. Germany Big Data in E-commerce Market
    • 10.3.3. France Big Data in E-commerce Market
    • 10.3.4. Spain Big Data in E-commerce Market
    • 10.3.5. Italy Big Data in E-commerce Market
    • 10.3.6. Rest of Europe Big Data in E-commerce Market
  • 10.4. Asia-Pacific Big Data in E-commerce Market Snapshot
    • 10.4.1. China Big Data in E-commerce Market
    • 10.4.2. India Big Data in E-commerce Market
    • 10.4.3. Japan Big Data in E-commerce Market
    • 10.4.4. Australia Big Data in E-commerce Market
    • 10.4.5. South Korea Big Data in E-commerce Market
    • 10.4.6. Rest of Asia Pacific Big Data in E-commerce Market
  • 10.5. Latin America Big Data in E-commerce Market Snapshot
    • 10.5.1. Brazil Big Data in E-commerce Market
    • 10.5.2. Mexico Big Data in E-commerce Market
  • 10.6. Rest of The World Big Data in E-commerce Market

Chapter 11. Competitive Intelligence

  • 11.1. Top Market Strategies
  • 11.2. Company Profiles
    • 11.2.1. Amazon Web Services, Inc.
      • 11.2.1.1. Key Information
      • 11.2.1.2. Overview
      • 11.2.1.3. Financial (Subject to Data Availability)
      • 11.2.1.4. Product Summary
      • 11.2.1.5. Recent Developments
    • 11.2.2. Data Inc.
    • 11.2.3. Dell Inc.
    • 11.2.4. Facebook
    • 11.2.5. Hitachi, Ltd.
    • 11.2.6. International Business Machines Corporation
    • 11.2.7. Microsoft Corp.
    • 11.2.8. Oracle Corp.
    • 11.2.9. Palantir Technologies, Inc.
    • 11.2.10. SAS Institute Inc.

Chapter 12. Research Process

  • 12.1. Research Process
    • 12.1.1. Data Mining
    • 12.1.2. Analysis
    • 12.1.3. Market Estimation
    • 12.1.4. Validation
    • 12.1.5. Publishing
  • 12.2. Research Attributes
  • 12.3. Research Assumption
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óÇ°À» ¼±Åà Áß
»óÇ° ºñ±³Çϱâ
Àüü»èÁ¦