½ÃÀ庸°í¼­
»óǰÄÚµå
1574280

¼¼°èÀÇ µ¥ÀÌÅÍ ºê·ÎÄ¿ ½ÃÀå : µ¥ÀÌÅÍ À¯Çüº°, µ¥ÀÌÅÍ ¼Ò½ºº°, Àü°³ À¯Çüº°, ¿ëµµº°, ÃÖÁ¾ »ç¿ëÀÚº°, Á¦°ø Á¦Ç°º°, µ¥ÀÌÅÍ °¡°Ý ¸ðµ¨º°, ±â¾÷ ±Ô¸ðº° ¿¹Ãø(2025-2030³â)

Data Broker Market by Data Type (Semi-Structured Data, Structured Data, Unstructured Data), Data Source (Private Data, Public Data), Deployment Type, Application, End User, Offering, Data Pricing Model, Company Size - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 183 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

µ¥ÀÌÅÍ ºê·ÎÄ¿ ½ÃÀåÀº 2023³â¿¡ 2¾ï 1,343¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú°í, 2024³â¿¡´Â 2¾ï 3,021¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 7.55%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 3¾ï 5,539¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

µ¥ÀÌÅÍ ºê·ÎÄ¿ ½ÃÀåÀº ¸¶ÄÉÆÃ, º¸Çè, ¸®½ºÅ© °ü¸® µî ´Ù¾çÇÑ ºÎ¹®ÀÇ Çʿ伺°ú ÀÀ¿ëÀ» ÅëÇØ Å« º¯È­¸¦ °Þ°í ÀÖ½À´Ï´Ù. µ¥ÀÌÅÍ ºê·ÎÄ¿´Â µ¥ÀÌÅ͸¦ ÃàÀû, ÆÇ¸ÅÇÏ°í »ó¼¼ÇÑ ¼ÒºñÀÚ ÇÁ·ÎÆÄÀÏÀ» Á¦°øÇÔÀ¸·Î½á ±â¾÷ÀÌ ´ë»óÀ» Á¼Èù ±¤°í³ª °³ÀÎÈ­µÈ ¸¶ÄÉÆÃ Àü·«¿¡ µµ¿òÀÌ µË´Ï´Ù. µ¥ÀÌÅÍ ºê·ÎÄ¿ÀÇ Çʿ伺Àº µðÁöÅÐ °æÁ¦°¡ È¿À²¼º°ú Á¤È®¼ºÀ» ³ôÀ̱â À§ÇØ µ¥ÀÌÅÍ Áß½ÉÀÇ ÀÇ»ç °áÁ¤¿¡ ÀÇÁ¸ÇÏ´Â °ÍÀÌ Å« ¿äÀÎÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÃÖÁ¾ ¿ëµµÀÇ ¹üÀ§´Â Ãæ½ÇÇÑ µ¥ÀÌÅ͸¦ ÅëÇØ °í°´ ÀÌÇØ¿Í ¾÷¹« È¿À²ÀÇ Çâ»óÀ» ¸ñÇ¥·Î ÇÏ´Â ¾÷°è¿¡±îÁö ÆÛÁ® ÀÖ½À´Ï´Ù. ÁÖ¿ä ¼ºÀå ¿äÀÎÀ¸·Î´Â ¼Ò¼È ¹Ìµð¾î³ª IoT ±â±â·ÎºÎÅÍÀÇ µ¥ÀÌÅÍ·® ±ÞÁõ, µ¥ÀÌÅÍ ÁÖµµ ÀλçÀÌÆ®¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, µ¥ÀÌÅÍ Ã³¸® ´É·ÂÀ» ³ôÀÌ´Â AI ¹× ºÐ¼® ±â¼úÀÇ Áøº¸ µîÀ» µé ¼ö ÀÖ½À´Ï´Ù. ÀáÀçÀûÀÎ ºñÁî´Ï½º ±âȸ´Â ¾ÈÀüÇÑ µ¥ÀÌÅÍ °Å·¡¸¦À§ÇÑ ºí·Ï üÀΰú ¼ÒºñÀÚÀÇ ÇÁ¶óÀ̹ö½Ã¿¡ ´ëÇÑ ¿ì·Á Áõ°¡¿¡ ´ëÀÀÇÏ´Â ÇÁ¶óÀ̹ö½Ã º¸È£ ±â¼ú°ú °°Àº »õ·Î¿î ±â¼ú¿¡ ÀÖ½À´Ï´Ù. ±×·¯³ª GDPR(EU °³ÀÎÁ¤º¸º¸È£±ÔÁ¤) ¹× CCPA¿Í °°Àº ¾ö°ÝÇÑ µ¥ÀÌÅÍ º¸È£ ±ÔÁ¤Àº µ¥ÀÌÅÍ °øÀ¯¸¦ Á¦ÇÑÇϰí ÄÄÇöóÀ̾𽺠Çõ½ÅÀ» ÇÊ¿ä·Î Çϸç, ¼ÒºñÀÚÀÇ ÇÁ¶óÀ̹ö½Ã ¹× µ¥ÀÌÅÍ ¾Ç¿ë¿¡ ´ëÇÑ À±¸®Àû ¿ì·Á°¡ È£Æò ¸®½ºÅ©·Î À̾îÁú ¼ö ÀÖ´Â µî ½ÃÀå Àº ¹®Á¦¿¡ Á÷¸éÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¦¾àÀ» °í·ÁÇÏ¸é ½ÃÀåÀº ÄÄÇöóÀ̾𽺠¼Ö·ç¼Ç°ú µ¥ÀÌÅ͸¦ À͸íÈ­ÇÏ´Â ±â¼ú Çõ½ÅÀÌ ÇÊ¿äÇÕ´Ï´Ù.Á¶»çÀÇ ÁøÀüÀº ¿¹Ãø ºÐ¼®À» À§ÇÑ ¸Ó½Å·¯´×ÀÇ ÅëÇÕ°ú °í±Þ µ¥ÀÌÅÍ ÅëÇÕ ±â¼úÀÇ °³¹ß¿¡ ÃÊÁ¡À» ¸ÂÃß¾î¾ß ÇÕ´Ï´Ù. À̸¦ À§ÇØ ÅëÇÕ ¹× Á¦ÈÞ°¡ ÁøÇàµÇ´Â °æÇâÀÌ ÀÖ½À´Ï´Ù. ±â¾÷Àº µ¥ÀÌÅÍ ¼Ò½º¸¦ ´Ù¾çÈ­ÇÏ°í ºÐ¼® ´É·Â º¸´Ù ±íÀº °í·Á »çÇ×À» Á¦°øÇÔÀ¸·Î½á ±Ã±ØÀûÀ¸·Î ¼ºÀåÀ» °¡¼ÓÇÏ°í °æÀï ¿ìÀ§¸¦ À¯ÁöÇÒ ¼ö ÀÖ½À´Ï´Ù. ºê·ÎÄ¿ ½ÃÀåÀÇ ÇâÈÄ ¿ªÇаú Áö¼Ó°¡´É¼ºÀ» Á¤ÀÇÇÏ°Ô µÉ °ÍÀÔ´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁسâ (2023³â) 2¾ï 1,343¸¸ ´Þ·¯
¿¹Ãø³â(2024³â) 2¾ï 3,021¸¸ ´Þ·¯
¿¹Ãø³â(2030³â) 3¾ï 5,539¸¸ ´Þ·¯
º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR)(%) 7.55%

½ÃÀå ¿ªÇÐ : ºü¸£°Ô ÁøÈ­ÇÏ´Â µ¥ÀÌÅÍ ºê·ÎÄ¿ ½ÃÀåÀÇ ÁÖ¿ä ½ÃÀå ÀλçÀÌÆ® °ø°³

µ¥ÀÌÅÍ ºê·ÎÄ¿ ½ÃÀåÀº ¼ö¿ä ¹× °ø±ÞÀÇ ¿ªµ¿Àû ÀÎ »óÈ£ ÀÛ¿ëÀ» ÅëÇØ º¯¸ð¸¦ °Þ°í ÀÖ½À´Ï´Ù. ºñÁî´Ï½º ±âȸ¸¦ ȹµæÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µ¿ÇâÀ» Á¾ÇÕÀûÀ¸·Î ÆÄ¾ÇÇÔÀ¸·Î½á ±â¾÷Àº Á¤Ä¡Àû, Áö¸®Àû, ±â¼úÀû, »çȸÀû, °æÁ¦Àû ¿µ¿ª¿¡ °ÉÄ£ ´Ù¾çÇÑ ¸®½ºÅ©¸¦ °æ°¨ÇÒ ¼ö ÀÖÀ» »Ó¸¸ ¾Æ´Ï¶ó, ¼ÒºñÀÚ Çൿ°ú ±×°ÍÀÌ Á¦Á¶ ºñ¿ë ¶Ç´Â ±¸¸Å µ¿Çâ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ»º¸´Ù ¸íÈ®ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • ´Ù¾çÇÑ ¾÷°è¿¡¼­ÀÇ µ¥ÀÌÅÍ ÁÖµµÀÇ ÀÇ»ç°áÁ¤°ú ºÐ¼®¿¡ÀÇ ÀÇÁ¸ÀÇ °íÁ¶
    • IoT µð¹ÙÀ̽º¸¦ Æ÷ÇÔÇÑ ´Ù¾çÇÑ ¼Ò½º·ÎºÎÅÍ »ý¼ºµÇ´Â µ¥ÀÌÅÍÀÇ ¾ç°ú À¯Çü Áõ°¡
    • ºñÁî´Ï½º ÀÎÅÚ¸®Àü½º ¿ëµµ¸¦ À§ÇÑ Ãæ½ÇÇÑ °íǰÁúÀÇ ½Ç½Ã°£ µ¥ÀÌÅÍ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡
    • °ß°íÇÑ µ¥ÀÌÅÍ Áß°³ ¼­ºñ½º¸¦ ÇÊ¿ä·Î ÇÏ´Â µðÁöÅÐ ¼­ºñ½º¿Í ¿Â¶óÀÎ °Å·¡ÀÇ ±ÞÁõ
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • µ¥ÀÌÅÍÀÇ Á¤È®¼º°ú ¹«°á¼ºÀ» º¸ÀåÇÏ±â ¾î·Æ°í ½Å·Ú¼º°ú ½Å¿ë¼º ÀúÇÏ·Î À̾îÁý´Ï´Ù.
    • ±âÁ¸ ±â¾÷À̳ª ½Å±Ô Âü°¡ ±â¾÷°úÀÇ °Ý·ÄÇÑ ½ÃÀå °æÀï¿¡ ÀÇÇÑ ÀÌÀÍ·üÀÇ ÀúÇÏ
  • ½ÃÀå ±âȸ
    • Çõ½Å°ú Åõ¸í¼ºÀ» À§ÇØ °³¹æÇü µ¥ÀÌÅÍÀÇ ÀÌ¿ëÀ» ÃËÁøÇÏ´Â Á¤ºÎÀÇ Áö¿ø°ú ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©
    • ¹æ´ëÇÑ ¼ÒºñÀÚ µ¥ÀÌÅ͸¦ ³º´Â ¼Ò¼È ¹Ìµð¾î¿Í ¸ð¹ÙÀÏ Ç÷§ÆûÀÇ º¸±Þ
    • ÀΰøÁö´É°ú ¸Ó½Å·¯´× ±â¼úÀÇ ÅëÇÕ¿¡ ÀÇÇÑ µ¥ÀÌÅÍ Ã³¸® ´É·ÂÀÇ Çâ»ó
  • ½ÃÀåÀÇ °úÁ¦
    • µ¥ÀÌÅÍ, ºê·ÎÄ¿ ¾÷°è¿¡ À־ ±Þ¼ÓÈ÷ ÁøÈ­ÇÏ´Â ±ÔÁ¦¿¡ÀÇ ´ëÀÀ¿¡´Â ´Ù¾×ÀÇ ÅõÀÚ°¡ ÇÊ¿ä
    • À±¸®ÀûÀ̰í ÇÕ¹ýÀûÀÎ ÀÌ¿ëÀ» È®º¸Çϱâ À§ÇÑ µ¥ÀÌÅÍÀÇ Ãâó¿Í ¼ÒÀ¯±ÇÀÇ È®¸³

Porter's Five Forces : µ¥ÀÌÅÍ ºê·ÎÄ¿ ½ÃÀåÀ» Ž»öÇÏ´Â Àü·« µµ±¸

Porter's Five Forces Framework´Â ½ÃÀå »óȲ°æÀï ±¸µµ¸¦ ÀÌÇØÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. Porter's Five Forces Framework´Â ±â¾÷ÀÇ °æÀïÀ» Æò°¡Çϰí Àü·«Àû ±âȸ¸¦ ޱ¸ÇÏ´Â ¸íÈ®ÇÑ ±â¼úÀ» ¼³¸íÇÕ´Ï´Ù. ÀÌ ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÌ ½ÃÀå ³» ¼¼·Âµµ¸¦ Æò°¡ÇÏ°í ½Å±Ô »ç¾÷ÀÇ ¼öÀͼºÀ» ÆÇ´ÜÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ÀÌ·¯ÇÑ ÀλçÀÌÆ®À» ÅëÇØ ±â¾÷Àº ÀÚ»çÀÇ °­Á¡À» Ȱ¿ëÇÏ°í ¾àÁ¡À» ÇØ°áÇϰí ÀáÀçÀûÀÎ °úÁ¦¸¦ ÇÇÇÒ ¼ö ÀÖÀ¸¸ç º¸´Ù °­ÀÎÇÑ ½ÃÀå¿¡¼­ÀÇ Æ÷Áö¼Å´×À» È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù.

PESTLE ºÐ¼® : µ¥ÀÌÅÍ ºê·ÎÄ¿ ½ÃÀå¿¡¼­ ¿ÜºÎ ¿µÇâÀ» ÆÄ¾Ç

¿ÜºÎ °Å½ÃÀû ȯ°æ ¿äÀÎÀº µ¥ÀÌÅÍ ºê·ÎÄ¿ ½ÃÀåÀÇ ¼º°ú ¿ªÇÐÀ» Çü¼ºÇϴµ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. Á¤Ä¡Àû, °æÁ¦Àû, »çȸÀû, ±â¼úÀû, ¹ýÀû, ȯ°æÀû ¿äÀÎ ºÐ¼®Àº ÀÌ·¯ÇÑ ¿µÇâÀ» Ž»öÇÏ´Â µ¥ ÇÊ¿äÇÑ Á¤º¸¸¦ ¼³¸íÇÕ´Ï´Ù. PESTLE ¿äÀÎÀ» Á¶»çÇÔÀ¸·Î½á ±â¾÷Àº ÀáÀçÀûÀÎ À§Çè°ú ±âȸ¸¦ ´õ Àß ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®À» ÅëÇØ ±â¾÷Àº ±ÔÁ¦, ¼ÒºñÀÚ ¼±È£, °æÁ¦ µ¿ÇâÀÇ º¯È­¸¦ ¿¹ÃøÇÏ°í ¾ÕÀ¸·Î ¿¹»óµÇ´Â Àû±ØÀûÀÎ ÀÇ»ç °áÁ¤À» ÇÒ Áغñ¸¦ ÇÒ ¼ö ÀÖ½À´Ï´Ù.

½ÃÀå Á¡À¯À² ºÐ¼® µ¥ÀÌÅÍ ºê·ÎÄ¿ ½ÃÀå °æÀï ±¸µµ ÆÄ¾Ç

µ¥ÀÌÅÍ ºê·ÎÄ¿ ½ÃÀåÀÇ »ó¼¼ÇÑ ½ÃÀå Á¡À¯À² ºÐ¼®À» ÅëÇØ °ø±Þ¾÷üÀÇ ¼º°ú¸¦ Á¾ÇÕÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±â¾÷Àº ¼öÀÍ, °í°´ ±â¹Ý, ¼ºÀå·ü µî ÁÖ¿ä ÁöÇ¥¸¦ ºñ±³ÇÏ¿© °æÀï Æ÷Áö¼Å´×À» ¹àÈú ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®À» ÅëÇØ ½ÃÀå ÁýÁß, ¼¼ºÐÈ­ ¹× ÅëÇÕ µ¿ÇâÀ» ¹àÇô³»°í °ø±Þ¾÷ü´Â °æÀïÀÌ Ä¡¿­ÇØÁö¸é¼­ ÀÚ½ÅÀÇ ÁöÀ§¸¦ ³ôÀÌ´Â Àü·«Àû ÀÇ»ç °áÁ¤À» ³»¸®´Â µ¥ ÇÊ¿äÇÑ Áö½ÄÀ» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º µ¥ÀÌÅÍ ºê·ÎÄ¿ ½ÃÀå¿¡¼­ °ø±Þ¾÷üÀÇ ¼º´É Æò°¡

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º´Â µ¥ÀÌÅÍ ºê·ÎÄ¿ ½ÃÀå¿¡¼­ °ø±Þ¾÷ü¸¦ Æò°¡ÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. ÀÌ Çà·ÄÀ» ÅëÇØ ºñÁî´Ï½º Á¶Á÷Àº °ø±Þ¾÷üÀÇ ºñÁî´Ï½º Àü·«°ú Á¦Ç° ¸¸Á·µµ¸¦ ±âÁØÀ¸·Î Æò°¡ÇÏ¿© ¸ñÇ¥¿¡ ¸Â´Â ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÀÇ»ç °áÁ¤À» ³»¸± ¼ö ÀÖ½À´Ï´Ù. ³× °¡Áö »çºÐ¸éÀ» ÅëÇØ °ø±Þ¾÷ü¸¦ ¸íÈ®Çϰí Á¤È®ÇÏ°Ô ¼¼ºÐÈ­ÇÏ¿© Àü·« ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê ¹× ¼Ö·ç¼ÇÀ» ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù.

Àü·« ºÐ¼® ¹× Ãßõ µ¥ÀÌÅÍ ºê·ÎÄ¿ ½ÃÀå¿¡¼­ ¼º°øÀ» À§ÇÑ ±æÀ» ±×¸®±â

µ¥ÀÌÅÍ ºê·ÎÄ¿ ½ÃÀåÀÇ Àü·« ºÐ¼®Àº ½ÃÀå¿¡¼­ÀÇ Á¸À縦 °­È­ÇÏ·Á´Â ±â¾÷¿¡ ÇʼöÀûÀÔ´Ï´Ù. ÁÖ¿ä ÀÚ¿ø, ´É·Â ¹× ¼º°ú ÁöÇ¥¸¦ °ËÅäÇÔÀ¸·Î½á ±â¾÷Àº ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇÏ°í °³¼±À» À§ÇØ ³ë·ÂÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ Á¢±Ù¹ýÀ» ÅëÇØ °æÀï ±¸µµ¿¡¼­ °úÁ¦¸¦ ±Øº¹ÇÏ°í »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Ȱ¿ëÇÏ¿© Àå±âÀûÀÎ ¼º°øÀ» °ÅµÑ ¼ö Àִ üÁ¦¸¦ ¸¶·ÃÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀÌ º¸°í¼­´Â ÁÖ¿ä °ü½É ºÐ¾ß¸¦ ´Ù·ç´Â ½ÃÀå¿¡ ´ëÇÑ Á¾ÇÕÀûÀÎ ºÐ¼®À» Á¦°øÇÕ´Ï´Ù.

1. ½ÃÀå ħÅõ : ÇöÀç ½ÃÀå ȯ°æÀÇ »ó¼¼ÇÑ °ËÅä, ÁÖ¿ä ±â¾÷ÀÇ ±¤¹üÀ§ÇÑ µ¥ÀÌÅÍ, ½ÃÀå µµ´Þ¹üÀ§ ¹× Àü¹ÝÀûÀÎ ¿µÇâ·Â Æò°¡.

2. ½ÃÀå °³Ã´µµ : ½ÅÈï ½ÃÀåÀÇ ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇϰí, ±âÁ¸ ºÎ¹®¿¡¼­ÀÇ È®Àå °¡´É¼ºÀ» Æò°¡Çϸç, ¹Ì·¡ ¼ºÀåÀ» À§ÇÑ Àü·«Àû ·Îµå¸ÊÀ» ¼³¸íÇÕ´Ï´Ù.

3. ½ÃÀå ´Ù¾çÈ­ : ÃÖ±Ù Á¦Ç° Ãâ½Ã, ¹Ì°³Ã´ Áö¿ª, ¾÷°èÀÇ ÁÖ¿ä Áøº¸, ½ÃÀåÀ» Çü¼ºÇÏ´Â Àü·«Àû ÅõÀÚ¸¦ ºÐ¼®ÇÕ´Ï´Ù.

4. °æÀï Æò°¡ ¹× Á¤º¸ : °æÀï ±¸µµ¸¦ öÀúÈ÷ ºÐ¼®ÇÏ¿© ½ÃÀå Á¡À¯À², »ç¾÷ Àü·«, Á¦Ç° Æ÷Æ®Æú¸®¿À, ÀÎÁõ, ±ÔÁ¦ ´ç±¹ ½ÂÀÎ, ƯÇã µ¿Çâ, ÁÖ¿ä ±â¾÷ÀÇ ±â¼ú Áøº¸ µîÀ» °ËÁõÇÕ´Ï´Ù.

5. Á¦Ç° °³¹ß ¹× Çõ½Å : ¹Ì·¡ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÃÖ÷´Ü ±â¼ú, R&D Ȱµ¿, Á¦Ç° Çõ½ÅÀ» °­Á¶ÇÕ´Ï´Ù.

¶ÇÇÑ ÀÌÇØ°ü°èÀÚ°¡ ÃæºÐÇÑ Á¤º¸¸¦ ¾ò°í ÀÇ»ç°áÁ¤À» ÇÒ ¼ö ÀÖµµ·Ï Áß¿äÇÑ Áú¹®¿¡µµ ´ë´äÇϰí ÀÖ½À´Ï´Ù.

1. ÇöÀç ½ÃÀå ±Ô¸ð¿Í ÇâÈÄ ¼ºÀå ¿¹ÃøÀº?

2. ÃÖ°íÀÇ ÅõÀÚ ±âȸ¸¦ Á¦°øÇÏ´Â Á¦Ç°, Áö¿ªÀº ¾îµðÀԴϱî?

3. ½ÃÀåÀ» Çü¼ºÇÏ´Â ÁÖ¿ä ±â¼ú µ¿Çâ°ú ±ÔÁ¦ÀÇ ¿µÇâÀº?

4. ÁÖ¿ä º¥´õÀÇ ½ÃÀå Á¡À¯À²°ú °æÀï Æ÷Áö¼ÇÀº?

5. º¥´õ ½ÃÀå ÁøÀÔ, ö¼ö Àü·«ÀÇ ¿øµ¿·ÂÀÌ µÇ´Â ¼öÀÍ¿ø°ú Àü·«Àû ±âȸ´Â ¹«¾ùÀΰ¡?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
      • ´Ù¾çÇÑ ¾÷°è¿¡¼­ µ¥ÀÌÅͺ° ÀÇ»ç°áÁ¤°ú ºÐ¼® ÀÇÁ¸µµ°¡ ³ô¾ÆÁö°í ÀÖ´Ù
      • IoT µð¹ÙÀ̽º¸¦ Æ÷ÇÔÇÑ ´Ù¾çÇÑ ¼Ò½º·ÎºÎÅÍ »ý¼ºµÇ´Â µ¥ÀÌÅÍÀÇ ¾ç°ú À¯Çü°¡ Áõ°¡
      • ºñÁî´Ï½º ÀÎÅÚ¸®Àü½º¸¦ À§ÇÑ Çâ»óµÈ °íǰÁú ½Ç½Ã°£ µ¥ÀÌÅÍ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡
      • µðÁöÅÐ ¼­ºñ½º¿Í ¿Â¶óÀÎ °Å·¡ÀÇ ±ÞÁõÀ¸·Î °­·ÂÇÑ µ¥ÀÌÅÍ Áß°³ ¼­ºñ½º°¡ ÇÊ¿äÇÏ°Ô µÇ¾ú½À´Ï´Ù
    • ¾ïÁ¦¿äÀÎ
      • µ¥ÀÌÅÍÀÇ Á¤È®¼º°ú ¿ÏÀü¼ºÀ» È®º¸ÇÏ´Â °ÍÀÌ °ï¶õÇØÁ®, ½Å·Ú¼º°ú ½Å·Ú¼ºÀÌ ÀúÇϵȴÙ
      • ±âÁ¸ ±â¾÷°ú ½Å±Ô Âü°¡ ±â¾÷¿¡ ÀÇÇÑ °Ý·ÄÇÑ ½ÃÀå °æÀïÀ¸·Î ÀÌÀÍ·üÀÌ ÀúÇϵǰí ÀÖ´Ù
    • ±âȸ
      • Çõ½Å°ú Åõ¸í¼ºÀ» À§ÇÑ °³¹æÇü µ¥ÀÌÅÍÀÇ ÀÌ¿ëÀ» ÃËÁøÇÏ´Â Á¤ºÎÀÇ Áö¿ø°ú ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©
      • ¼Ò¼È ¹Ìµð¾î¿Í ¸ð¹ÙÀÏ Ç÷§ÆûÀÇ º¸±Þ¿¡ ÀÇÇØ ¹æ´ëÇÑ ¼ÒºñÀÚ µ¥ÀÌÅͰ¡ »ý¼ºµÈ´Ù
      • µ¥ÀÌÅÍ Ã³¸® ´É·ÂÀ» °­È­ÇÏ´Â ÀΰøÁö´É°ú ¸Ó½Å·¯´× ±â¼úÀÇ ÅëÇÕ
    • °úÁ¦
      • µ¥ÀÌÅÍ Áß°³¾÷°èÀÇ ±Þ¼ÓÈ÷ º¯È­ÇÏ´Â ±ÔÁ¦¿¡ ÀûÀÀÇϱâ À§Çؼ­´Â ¸·´ëÇÑ ÅõÀÚ°¡ ÇÊ¿ä
      • À±¸®ÀûÀ̰í ÇÕ¹ýÀûÀÎ »ç¿ëÀ» º¸ÀåÇϱâ À§ÇØ µ¥ÀÌÅÍÀÇ Ãâó¿Í ¼ÒÀ¯±ÇÀ» È®¸³
  • ½ÃÀå ¼¼ºÐÈ­ ºÐ¼®
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®
    • Á¤Ä¡
    • °æÁ¦
    • »çȸ
    • ±â¼ú
    • ¹ý·ü
    • ȯ°æ

Á¦6Àå µ¥ÀÌÅÍ ºê·ÎÄ¿ ½ÃÀå : µ¥ÀÌÅÍ À¯Çüº°

  • ¼Ò°³
  • ¹Ý±¸Á¶È­ µ¥ÀÌÅÍ
  • ±¸Á¶È­ µ¥ÀÌÅÍ
  • ºñ±¸Á¶È­ µ¥ÀÌÅÍ

Á¦7Àå µ¥ÀÌÅÍ ºê·ÎÄ¿ ½ÃÀå : µ¥ÀÌÅÍ ¼Ò½ºº°

  • ¼Ò°³
  • °³ÀÎ µ¥ÀÌÅÍ
  • °ø°³ µ¥ÀÌÅÍ

Á¦8Àå µ¥ÀÌÅÍ ºê·ÎÄ¿ ½ÃÀå : Àü°³ À¯Çüº°

  • ¼Ò°³
  • Ŭ¶ó¿ìµå
  • ¿ÂÇÁ·¹¹Ì½º

Á¦9Àå µ¥ÀÌÅÍ ºê·ÎÄ¿ ½ÃÀå : ¿ëµµº°

  • ¼Ò°³
  • °í°´ºÐ¼®
  • ¸¶ÄÉÆÃ°ú ÆÇ¸Å
  • ¸®½ºÅ© °ü¸®

Á¦10Àå µ¥ÀÌÅÍ ºê·ÎÄ¿ ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

  • ¼Ò°³
  • BFSI
  • Á¤ºÎ
  • ÀÇ·á
  • ¼Ò¸Å

Á¦11Àå µ¥ÀÌÅÍ ºê·ÎÄ¿ ½ÃÀå : Á¦°ø Á¦Ç°º°

  • ¼Ò°³
  • ÄÁ¼³ÆÃ ¼­ºñ½º
  • DaaS(Data-as-a-Service)
  • ¼­ºñ½º·Î¼­ ÀλçÀÌÆ®
  • ¸Å´ÏÁöµå ¼­ºñ½º
    • µ¥ÀÌÅÍ ÅëÇÕ
    • µ¥ÀÌÅÍ Ç°Áú
    • µ¥ÀÌÅÍ º¸¾È

Á¦12Àå µ¥ÀÌÅÍ ºê·ÎÄ¿ ½ÃÀå : µ¥ÀÌÅÍ °¡°Ý ¸ðµ¨º°

  • ¼Ò°³
  • Á¾·® °ú±ÝÁ¦
  • ±¸µ¶ º£À̽º

Á¦13Àå µ¥ÀÌÅÍ ºê·ÎÄ¿ ½ÃÀå : ±â¾÷ ±Ô¸ðº°

  • ¼Ò°³
  • ´ë±â¾÷
  • Áß¼Ò±â¾÷

Á¦14Àå ¾Æ¸Þ¸®Ä«ÀÇ µ¥ÀÌÅÍ ºê·ÎÄ¿ ½ÃÀå

  • ¼Ò°³
  • ¾Æ¸£ÇîÆ¼³ª
  • ºê¶óÁú
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ¹Ì±¹

Á¦15Àå ¾Æ½Ã¾ÆÅÂÆò¾ç µ¥ÀÌÅÍ ºê·ÎÄ¿ ½ÃÀå

  • ¼Ò°³
  • È£ÁÖ
  • Áß±¹
  • Àεµ
  • Àεµ³×½Ã¾Æ
  • ÀϺ»
  • ¸»·¹À̽þÆ
  • Çʸ®ÇÉ
  • ½Ì°¡Æ÷¸£
  • Çѱ¹
  • ´ë¸¸
  • ű¹
  • º£Æ®³²

Á¦16Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ µ¥ÀÌÅÍ ºê·ÎÄ¿ ½ÃÀå

  • ¼Ò°³
  • µ§¸¶Å©
  • ÀÌÁýÆ®
  • Çɶõµå
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • À̽º¶ó¿¤
  • ÀÌÅ»¸®¾Æ
  • ³×´ú¶õµå
  • ³ªÀÌÁö¸®¾Æ
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • īŸ¸£
  • ·¯½Ã¾Æ
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«
  • ½ºÆäÀÎ
  • ½º¿þµ§
  • ½ºÀ§½º
  • ÅÍŰ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • ¿µ±¹

Á¦17Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®(2023³â)
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º(2023³â)
  • °æÀï ½Ã³ª¸®¿À ºÐ¼®
  • Àü·« ºÐ¼®°ú Á¦¾È
BJH 24.11.07

The Data Broker Market was valued at USD 213.43 million in 2023, expected to reach USD 230.21 million in 2024, and is projected to grow at a CAGR of 7.55%, to USD 355.39 million by 2030.

The market for data brokers is witnessing significant transformation, underscored by the necessity and application across diverse sectors, including marketing, insurance, and risk management. Data brokers accumulate and sell data, offering detailed consumer profiles that aid businesses in targeted advertising and personalized marketing strategies. The necessity of data brokers is largely driven by the digital economy's reliance on data-driven decision-making to increase efficiency and precision. The end-use scope extends to industries seeking to enhance customer understanding and operational effectiveness through enriched data. Key growth factors include the surge in data volume from social media and IoT devices, the increasing demand for data-driven insights, and the advancements in AI and analytics technology that enhance data processing capabilities. Potential opportunities lie in emerging technologies such as blockchain for secure data transactions and privacy-preserving technologies which align with growing consumer privacy concerns. However, the market faces challenges including stringent data protection regulations like GDPR and CCPA, which restrict data sharing and necessitate compliance innovations, and ethical concerns about consumer privacy and data misuse that could result in reputational risks. In light of these limitations, the market needs innovations in compliance solutions and techniques to anonymize data. Research advancements should focus on integrating machine learning for predictive analytics and developing sophisticated data integration techniques. The nature of the data broker market is competitive, with a trend towards consolidation and partnerships to enhance data richness and avoid duplication. Businesses can explore diversifying their data sources and expanding their analytic capabilities to offer deeper insights, ultimately driving growth and maintaining a competitive edge. Addressing privacy concerns while maximizing data utility will define the future dynamics and sustainability of the data broker market.

KEY MARKET STATISTICS
Base Year [2023] USD 213.43 million
Estimated Year [2024] USD 230.21 million
Forecast Year [2030] USD 355.39 million
CAGR (%) 7.55%

Market Dynamics: Unveiling Key Market Insights in the Rapidly Evolving Data Broker Market

The Data Broker Market is undergoing transformative changes driven by a dynamic interplay of supply and demand factors. Understanding these evolving market dynamics prepares business organizations to make informed investment decisions, refine strategic decisions, and seize new opportunities. By gaining a comprehensive view of these trends, business organizations can mitigate various risks across political, geographic, technical, social, and economic domains while also gaining a clearer understanding of consumer behavior and its impact on manufacturing costs and purchasing trends.

  • Market Drivers
    • Increasing reliance on data-driven decision making and analytics across various industries
    • Growing volume and variety of data generated from diverse sources including IoT devices
    • Rising demand for enriched, high-quality, and real-time data for business intelligence applications
    • Proliferation of digital services and online transactions necessitating robust data brokerage services
  • Market Restraints
    • Difficulty in ensuring data accuracy and integrity, leading to decreased trust and reliability
    • Intense market competition from established players and new entrants, driving down profit margins
  • Market Opportunities
    • Government support and regulatory frameworks promoting the use of open data for innovation and transparency
    • Proliferation of social media and mobile platforms generating vast amounts of consumer data
    • Integration of artificial intelligence and machine learning technologies enhancing data processing capabilities
  • Market Challenges
    • Adapting to rapidly evolving regulations in the data brokerage industry requires significant investment
    • Establishing data provenance and ownership to ensure ethical and lawful usage

Porter's Five Forces: A Strategic Tool for Navigating the Data Broker Market

Porter's five forces framework is a critical tool for understanding the competitive landscape of the Data Broker Market. It offers business organizations with a clear methodology for evaluating their competitive positioning and exploring strategic opportunities. This framework helps businesses assess the power dynamics within the market and determine the profitability of new ventures. With these insights, business organizations can leverage their strengths, address weaknesses, and avoid potential challenges, ensuring a more resilient market positioning.

PESTLE Analysis: Navigating External Influences in the Data Broker Market

External macro-environmental factors play a pivotal role in shaping the performance dynamics of the Data Broker Market. Political, Economic, Social, Technological, Legal, and Environmental factors analysis provides the necessary information to navigate these influences. By examining PESTLE factors, businesses can better understand potential risks and opportunities. This analysis enables business organizations to anticipate changes in regulations, consumer preferences, and economic trends, ensuring they are prepared to make proactive, forward-thinking decisions.

Market Share Analysis: Understanding the Competitive Landscape in the Data Broker Market

A detailed market share analysis in the Data Broker Market provides a comprehensive assessment of vendors' performance. Companies can identify their competitive positioning by comparing key metrics, including revenue, customer base, and growth rates. This analysis highlights market concentration, fragmentation, and trends in consolidation, offering vendors the insights required to make strategic decisions that enhance their position in an increasingly competitive landscape.

FPNV Positioning Matrix: Evaluating Vendors' Performance in the Data Broker Market

The Forefront, Pathfinder, Niche, Vital (FPNV) Positioning Matrix is a critical tool for evaluating vendors within the Data Broker Market. This matrix enables business organizations to make well-informed decisions that align with their goals by assessing vendors based on their business strategy and product satisfaction. The four quadrants provide a clear and precise segmentation of vendors, helping users identify the right partners and solutions that best fit their strategic objectives.

Strategy Analysis & Recommendation: Charting a Path to Success in the Data Broker Market

A strategic analysis of the Data Broker Market is essential for businesses looking to strengthen their global market presence. By reviewing key resources, capabilities, and performance indicators, business organizations can identify growth opportunities and work toward improvement. This approach helps businesses navigate challenges in the competitive landscape and ensures they are well-positioned to capitalize on newer opportunities and drive long-term success.

Key Company Profiles

The report delves into recent significant developments in the Data Broker Market, highlighting leading vendors and their innovative profiles. These include Acxiom, Axiometrics, CoreLogic, Dun & Bradstreet, Epsilon, Equifax, Experian, HG Insights, ID Analytics, Infogroup, IRI, LiveRamp, Lotame, Neustar, Oracle Data Cloud, Red Ventures, Spokeo, TowerData, TransUnion, and Ziff Davis.

Market Segmentation & Coverage

This research report categorizes the Data Broker Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Based on Data Type, market is studied across Semi-Structured Data, Structured Data, and Unstructured Data.
  • Based on Data Source, market is studied across Private Data and Public Data.
  • Based on Deployment Type, market is studied across Cloud and On-Premises.
  • Based on Application, market is studied across Customer Analytics, Marketing and Sales, and Risk Management.
  • Based on End User, market is studied across BFSI, Government, Healthcare, and Retail.
  • Based on Offering, market is studied across Consulting Services, Data as a Service (DaaS), Insight as a Service, and Managed Services. The Managed Services is further studied across Data Integration, Data Quality, and Data Security.
  • Based on Data Pricing Model, market is studied across Pay-Per-Use and Subscription-Based.
  • Based on Company Size, market is studied across Large Enterprises and Small and Medium-Sized Enterprises (SMEs).
  • Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

The report offers a comprehensive analysis of the market, covering key focus areas:

1. Market Penetration: A detailed review of the current market environment, including extensive data from top industry players, evaluating their market reach and overall influence.

2. Market Development: Identifies growth opportunities in emerging markets and assesses expansion potential in established sectors, providing a strategic roadmap for future growth.

3. Market Diversification: Analyzes recent product launches, untapped geographic regions, major industry advancements, and strategic investments reshaping the market.

4. Competitive Assessment & Intelligence: Provides a thorough analysis of the competitive landscape, examining market share, business strategies, product portfolios, certifications, regulatory approvals, patent trends, and technological advancements of key players.

5. Product Development & Innovation: Highlights cutting-edge technologies, R&D activities, and product innovations expected to drive future market growth.

The report also answers critical questions to aid stakeholders in making informed decisions:

1. What is the current market size, and what is the forecasted growth?

2. Which products, segments, and regions offer the best investment opportunities?

3. What are the key technology trends and regulatory influences shaping the market?

4. How do leading vendors rank in terms of market share and competitive positioning?

5. What revenue sources and strategic opportunities drive vendors' market entry or exit strategies?

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Increasing reliance on data-driven decision making and analytics across various industries
      • 5.1.1.2. Growing volume and variety of data generated from diverse sources including IoT devices
      • 5.1.1.3. Rising demand for enriched, high-quality, and real-time data for business intelligence applications
      • 5.1.1.4. Proliferation of digital services and online transactions necessitating robust data brokerage services
    • 5.1.2. Restraints
      • 5.1.2.1. Difficulty in ensuring data accuracy and integrity, leading to decreased trust and reliability
      • 5.1.2.2. Intense market competition from established players and new entrants, driving down profit margins
    • 5.1.3. Opportunities
      • 5.1.3.1. Government support and regulatory frameworks promoting the use of open data for innovation and transparency
      • 5.1.3.2. Proliferation of social media and mobile platforms generating vast amounts of consumer data
      • 5.1.3.3. Integration of artificial intelligence and machine learning technologies enhancing data processing capabilities
    • 5.1.4. Challenges
      • 5.1.4.1. Adapting to rapidly evolving regulations in the data brokerage industry requires significant investment
      • 5.1.4.2. Establishing data provenance and ownership to ensure ethical and lawful usage
  • 5.2. Market Segmentation Analysis
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. Data Broker Market, by Data Type

  • 6.1. Introduction
  • 6.2. Semi-Structured Data
  • 6.3. Structured Data
  • 6.4. Unstructured Data

7. Data Broker Market, by Data Source

  • 7.1. Introduction
  • 7.2. Private Data
  • 7.3. Public Data

8. Data Broker Market, by Deployment Type

  • 8.1. Introduction
  • 8.2. Cloud
  • 8.3. On-Premises

9. Data Broker Market, by Application

  • 9.1. Introduction
  • 9.2. Customer Analytics
  • 9.3. Marketing and Sales
  • 9.4. Risk Management

10. Data Broker Market, by End User

  • 10.1. Introduction
  • 10.2. BFSI
  • 10.3. Government
  • 10.4. Healthcare
  • 10.5. Retail

11. Data Broker Market, by Offering

  • 11.1. Introduction
  • 11.2. Consulting Services
  • 11.3. Data as a Service (DaaS)
  • 11.4. Insight as a Service
  • 11.5. Managed Services
    • 11.5.1. Data Integration
    • 11.5.2. Data Quality
    • 11.5.3. Data Security

12. Data Broker Market, by Data Pricing Model

  • 12.1. Introduction
  • 12.2. Pay-Per-Use
  • 12.3. Subscription-Based

13. Data Broker Market, by Company Size

  • 13.1. Introduction
  • 13.2. Large Enterprises
  • 13.3. Small and Medium-Sized Enterprises (SMEs)

14. Americas Data Broker Market

  • 14.1. Introduction
  • 14.2. Argentina
  • 14.3. Brazil
  • 14.4. Canada
  • 14.5. Mexico
  • 14.6. United States

15. Asia-Pacific Data Broker Market

  • 15.1. Introduction
  • 15.2. Australia
  • 15.3. China
  • 15.4. India
  • 15.5. Indonesia
  • 15.6. Japan
  • 15.7. Malaysia
  • 15.8. Philippines
  • 15.9. Singapore
  • 15.10. South Korea
  • 15.11. Taiwan
  • 15.12. Thailand
  • 15.13. Vietnam

16. Europe, Middle East & Africa Data Broker Market

  • 16.1. Introduction
  • 16.2. Denmark
  • 16.3. Egypt
  • 16.4. Finland
  • 16.5. France
  • 16.6. Germany
  • 16.7. Israel
  • 16.8. Italy
  • 16.9. Netherlands
  • 16.10. Nigeria
  • 16.11. Norway
  • 16.12. Poland
  • 16.13. Qatar
  • 16.14. Russia
  • 16.15. Saudi Arabia
  • 16.16. South Africa
  • 16.17. Spain
  • 16.18. Sweden
  • 16.19. Switzerland
  • 16.20. Turkey
  • 16.21. United Arab Emirates
  • 16.22. United Kingdom

17. Competitive Landscape

  • 17.1. Market Share Analysis, 2023
  • 17.2. FPNV Positioning Matrix, 2023
  • 17.3. Competitive Scenario Analysis
  • 17.4. Strategy Analysis & Recommendation

Companies Mentioned

  • 1. Acxiom
  • 2. Axiometrics
  • 3. CoreLogic
  • 4. Dun & Bradstreet
  • 5. Epsilon
  • 6. Equifax
  • 7. Experian
  • 8. HG Insights
  • 9. ID Analytics
  • 10. Infogroup
  • 11. IRI
  • 12. LiveRamp
  • 13. Lotame
  • 14. Neustar
  • 15. Oracle Data Cloud
  • 16. Red Ventures
  • 17. Spokeo
  • 18. TowerData
  • 19. TransUnion
  • 20. Ziff Davis
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦