½ÃÀ庸°í¼­
»óǰÄÚµå
1602228

¼¼°èÀÇ °¡»ó ¹ßÀü¼Ò ½ÃÀå : ±â¼ú, ÄÄÆ÷³ÍÆ®, Àü°³ ¸ðµå, Ä«Å×°í¸®, ÃÖÁ¾ »ç¿ëÀÚº° ¿¹Ãø(2025-2030³â)

Virtual Power Plant Market by Technology (Advanced Metering Infrastructure, Demand Response, Distribution Generation), Component (Hardware, Services, Software), Deployment Mode, Category, End User - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 190 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

°¡»ó ¹ßÀü¼Ò ½ÃÀåÀÇ 2023³â ½ÃÀå ±Ô¸ð´Â 57¾ï 9,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú½À´Ï´Ù. 2024³â¿¡´Â 70¾ï 4,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, CAGR 22.48%·Î ¼ºÀåÇϰí, 2030³â¿¡´Â 239¾ï 8,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

°¡»ó ¹ßÀü¼Ò(VPP)´Â ºÐ»êÇü ¿¡³ÊÁö ÀÚ¿øÀ» Áý°èÇÏ¿© ¹ßÀü°ú ¼Òºñ¸¦ ÃÖÀûÈ­ÇÕ´Ï´Ù. °ü¸®¿¡ ÇʼöÀûÀÎ Á¦Ç°ÀÔ´Ï´Ù. ¹ßÀü¼Ò¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÁÙÀ̱â À§ÇÑ ¸ñÀûÀ¸·Î, VPP´Â ÁÖÅÃ, »ó¾÷½Ã¼³, »ê¾÷¿ë ½Ã½ºÅÛ µî ´Ù¾çÇÑ ¿ëµµ·Î »ç¿ëµÇ¸ç, »ç¿ëÀÚ´Â ¿¡³ÊÁö ¿ä±¸¿Í ºñ¿ëÀ» È¿À²ÀûÀ¸·Î °ü¸®ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÁÖµÈ ÃÖÁ¾ »ç¿ëÀÚ´Â Àü·Â ȸ»ç, ¿¡³ÊÁö °ø±Þ ȸ»ç, ½º¸¶Æ® ±×¸®µå ½ÇÇö ±â¾÷ µîÀ» Æ÷ÇÔÇÕ´Ï´Ù. ÅëÇÕ¿¡ ´ëÇÑ ¿ä±¸°¡ Ä¿Áü¿¡ µû¶ó ½ÃÀå ¼ºÀåÀ» Å©°Ô µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. »õ·Î¿î ºñÁî´Ï½º ±âȸ´Â ¿¡³ÊÁö ±×¸®µå °ü¸®¸¦À§ÇÑ ÃÖ÷´Ü ¼ÒÇÁÆ®¿þ¾î ¼Ö·ç¼ÇÀÔ´Ï´Ù. °³¹ß°ú ¹Ì°³¹ßÀÇ Àç»ý °¡´É ¿¡³ÊÁö¿øÀ» °¡Áö´Â Áö¿ª¿¡¼­ÀÇ VPPÀÇ È®´ë¿¡ ÀÖ½À´Ï´Ù. °ü¸®ÇÏ´Â º¹À⼺°ú °°Àº °úÁ¦¿¡ Á÷¸éÇϰí ÀÖÀ¸¸ç, ¾÷°è´Â ±ÔÁ¦»óÀÇ Àå¾Ö¹°°ú ±â¼ú Àü°³¿¡ À־ÀÇ Ç¥ÁØÈ­ÀÇ Çʿ伺¿¡µµ Á÷¸éÇϰí ÀÖ½À´Ï´Ù. ÀΰøÁö´É(AI)°ú ¸Ó½Å·¯´×(ML)ÀÇ Çõ½ÅÀº ¿¹Ãø ºÐ¼®À» °­È­Çϰí, ºÎÇÏ °ü¸®¸¦ ÃÖÀûÈ­Çϸç, ¼ÛÀü¸ÁÀÇ ¾ÈÁ¤¿¡ ±â¿©ÇÏ´Â À¯¸ÁÇÑ ±æÀ» Á¦°øÇÕ´Ï´Ù. ±×¸®°í Çù·Â °ü°è¸¦ ÅëÇØ ÀÌÇØ °ü°èÀڵ鿡°Ô ¼ö¸¹Àº Àü¸ÁÀ» °¡Á®´ÙÁÝ´Ï´Ù. ±â¾÷Àº ¿¡³ÊÁö °ü¸®¸¦ À§ÇÑ »ç¿ëÀÚ Ä£È­ÀûÀÎ Ç÷§Æû °³¹ß¿¡ ÁÖ·ÂÇÏ°í ¼ÒºñÀÚ ¼ö¿ä Áõ°¡¿¡ ´ëÀÀÇϱâ À§ÇØ ¾ÈÀüÇÏ°í ½Å·Ú¼º ÀÖ´Â ½Ã½ºÅÛÀ» Áß½ÃÇØ¾ß ÇÕ´Ï´Ù. Èû°ú Áö¼Ó°¡´É¼ºÀ» ´Ù·ç´Â Â÷¼¼´ë ±â¼ú ¼Ö·ç¼ÇÀÇ ÅëÇÕ¿¡ ±â¿©Çϰí ÀÖÀ¸¸ç, ¼ºÀå°ú Çõ½ÅÀ» À§ÇÑ ¿ªµ¿ÀûÀÎ ºÐ¾ß°¡ µÇ¾ú½À´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁسâ(2023) 57¾ï 9,000¸¸ ´Þ·¯
¿¹Ãø³â(2024) 70¾ï 4,000¸¸ ´Þ·¯
¿¹Ãø³â(2030) 239¾ï 8,000¸¸ ´Þ·¯
CAGR(%) 22.48%

½ÃÀå ¿ªÇÐ: ºü¸£°Ô ÁøÈ­ÇÏ´Â °¡»ó ¹ßÀü¼Ò ½ÃÀåÀÇ ÁÖ¿ä ½ÃÀå ÀλçÀÌÆ® °ø°³

°¡»ó ¹ßÀü¼Ò ½ÃÀåÀº ¼ö¿ä ¹× °ø±ÞÀÇ ¿ªµ¿ÀûÀÎ »óÈ£ÀÛ¿ë¿¡ ÀÇÇØ º¯¸ð¸¦ ÀÌ·ç°í ÀÖ½À´Ï´Ù. »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ ȹµæÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µ¿ÇâÀ» Á¾ÇÕÀûÀ¸·Î ÆÄ¾ÇÇÔÀ¸·Î½á ±â¾÷Àº Á¤Ä¡Àû, Áö¸®Àû, ±â¼úÀû, »çȸÀû, °æÁ¦ÀûÀÎ ¿µ¿ª¿¡ °ÉÄ£ ´Ù¾çÇÑ ¸®½ºÅ©¸¦ °æ°¨ÇÒ ¼ö ÀÖÀ½°ú µ¿½Ã¿¡, ¼ÒºñÀÚ Çൿ°ú ±×°ÍÀÌ Á¦Á¶ ºñ¿ëÀ̳ª ±¸¸Å µ¿Çâ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» º¸´Ù ¸íÈ®ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • ¼¼°èÀÇ Àç»ý °¡´É ¿¡³ÊÁö ¹ßÀüÀ¸·ÎÀÇ ½ÃÇÁÆ®ÀÇ °íÁ¶
    • Á¤ºÎ±â°ü¿¡ ÀÇÇÑ ±×¸°¿¡³ÊÁö ¸ñÇ¥¿Í Áö¼Ó°¡´ÉÇÑ ¿¡³ÊÁö°ü¸®¿¡ ´ëÇÑ ´ëó Áõ°¡
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ´Ù¾çÇÑ ¿¡³ÊÁö ÀÚ¿øÀ» ´Ù¾çÇÑ ±â¼ú·Î ÅëÇÕÇÏ´Â º¹À⼺
  • ½ÃÀå ±âȸ
    • ¹èÅ͸® ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ(BESS)°ú °¡»ó ¹ßÀü¼ÒÀÇ ÅëÇÕ
    • ¿¡³ÊÁö ¹èºÐÀ» ÃÖÀûÈ­Çϰí EV ¼ÒÀ¯ÀÇ ÀÌÁ¡À» ÁõÆøÇϱâ À§ÇØ VPP¿¡ EV ÅëÇÕ
  • ½ÃÀåÀÇ °úÁ¦
    • µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ¹× »çÀ̹ö º¸¾È ¹®Á¦

Porter's Five Force : °¡»ó ¹ßÀü¼Ò ½ÃÀåÀ» Ž»öÇÏ´Â Àü·« µµ±¸

Porter's Five Force Framework´Â ½ÃÀå »óȲ°æÀï ±¸µµ¸¦ ÀÌÇØÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. ±â¾÷ÀÌ ½ÃÀå ³» ¼¼·Âµµ¸¦ Æò°¡ÇÏ°í ½Å±Ô »ç¾÷ÀÇ ¼öÀͼºÀ» ÆÇ´ÜÇÒ ¼ö ÀÖµµ·Ï µµ¿ÍÁÝ´Ï´Ù. ´ç½ÅÀº ´õ °­ÀÎÇÑ ½ÃÀå¿¡¼­ Æ÷Áö¼Å´×À» º¸ÀåÇÒ ¼ö ÀÖ½À´Ï´Ù.

PESTLE ºÐ¼® : °¡»ó ¹ßÀü¼Ò ½ÃÀåÀÇ ¿ÜºÎ ¿µÇâÀ» ÆÄ¾Ç

¿ÜºÎ °Å½Ã ȯ°æ ¿äÀÎÀº °¡»ó ¹ßÀü¼Ò ½ÃÀåÀÇ ¼º°ú ¿ªÇÐÀ» Çü¼ºÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ»ÇÕ´Ï´Ù. ¿µÇâÀ» Ž»öÇÏ´Â µ¥ ÇÊ¿äÇÑ Á¤º¸¸¦ Á¦°øÇÕ´Ï´Ù. PESTLE ¿äÀÎÀ» Á¶»çÇÔÀ¸·Î½á ±â¾÷Àº ÀáÀçÀûÀÎ À§Çè°ú ±âȸ¸¦ ´õ Àß ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. Àû±ØÀûÀÎ ÀÇ»ç °áÁ¤À» ÇÒ Áغñ°¡ µÇ¾ú½À´Ï´Ù.

½ÃÀå Á¡À¯À² ºÐ¼® : °¡»ó ¹ßÀü¼Ò ½ÃÀå °æÀï ±¸µµ ÆÄ¾Ç

°¡»ó ¹ßÀü¼Ò ½ÃÀåÀÇ »ó¼¼ÇÑ ½ÃÀå Á¡À¯À² ºÐ¼®À» ÅëÇØ °ø±Þ¾÷üÀÇ ¼º°ú¸¦ Á¾ÇÕÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®À» ÅëÇØ ½ÃÀå ÁýÁß, ´ÜÆíÈ­, ÅëÇÕ µ¿ÇâÀ» ¹àÇô³»°í º¥´õ´Â °æÀïÀÌ Ä¡¿­ÇØÁö¸é¼­ ÀÚ»çÀÇ ÁöÀ§¸¦ ³ôÀÌ´Â Àü·«Àû ÀÇ»ç°áÁ¤À» Çϱâ À§ÇØ ÇÊ¿äÇÑ Áö°ß ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º : °¡»ó ¹ßÀü¼Ò ½ÃÀå¿¡¼­ °ø±Þ¾÷üÀÇ ¼º´É Æò°¡

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º´Â °¡»ó ¹ßÀü¼Ò ½ÃÀå¿¡¼­ º¥´õ¸¦ Æò°¡ÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. 4°³ÀÇ »çºÐ¸éÀ» ÅëÇØ º¥´õ¸¦ ¸íÈ®Çϰí Á¤È®ÇÏ°Ô ºÎ¹®È­Çϰí Àü·« ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê ¹× ¼Ö·ç¼ÇÀ» ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù.

Àü·« ºÐ¼® ¹× Ãßõ : °¡»ó ¹ßÀü¼Ò ½ÃÀå¿¡¼­ ¼º°øÀ» À§ÇÑ ±æÀ» ±×¸®±â

°¡»ó ¹ßÀü¼Ò ½ÃÀåÀÇ Àü·« ºÐ¼®Àº ¼¼°è ½ÃÀå¿¡¼­ÀÇ ÇÁ·¹Á𽺠°­È­¸¦ ¸ñÇ¥·Î ÇÏ´Â ±â¾÷¿¡ ÇʼöÀûÀÎ ¿ä¼ÒÀÔ´Ï´Ù. ÀÌ Á¢±Ù¹ýÀ» ÅëÇØ °æÀï ±¸µµ¿¡¼­ °úÁ¦¸¦ ±Øº¹ÇÏ°í »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Ȱ¿ëÇÏ¿© Àå±âÀûÀÎ ¼º°øÀ» °ÅµÑ ¼ö ÀÖ´Â ½Ã½ºÅÛÀ» ±¸ÃàÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀÌ º¸°í¼­´Â ÁÖ¿ä °ü½É ºÐ¾ß¸¦ Æ÷°ýÇÏ´Â ½ÃÀåÀÇ Á¾ÇÕÀûÀÎ ºÐ¼®À» Á¦°øÇÕ´Ï´Ù.

1. ½ÃÀå ħÅõ: ÇöÀç ½ÃÀå ȯ°æÀÇ »ó¼¼ÇÑ °ËÅä, ÁÖ¿ä ±â¾÷ÀÇ ±¤¹üÀ§ÇÑ µ¥ÀÌÅÍ, ½ÃÀå µµ´Þ¹üÀ§ ¹× Àü¹ÝÀûÀÎ ¿µÇâ·Â Æò°¡.

2. ½ÃÀå °³Ã´µµ: ½ÅÈï ½ÃÀåÀÇ ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇÏ°í ±âÁ¸ ºÐ¾ßÀÇ È®Àå °¡´É¼ºÀ» Æò°¡ÇÏ¸ç ¹Ì·¡ ¼ºÀåÀ» À§ÇÑ Àü·«Àû ·Îµå¸ÊÀ» Á¦°øÇÕ´Ï´Ù.

3. ½ÃÀå ´Ù¾çÈ­: ÃÖ±Ù Á¦Ç° Ãâ½Ã, ¹Ì°³Ã´ Áö¿ª, ¾÷°èÀÇ ÁÖ¿ä Áøº¸, ½ÃÀåÀ» Çü¼ºÇÏ´Â Àü·«Àû ÅõÀÚ¸¦ ºÐ¼®ÇÕ´Ï´Ù.

4. °æÀï Æò°¡ ¹× Á¤º¸ : °æÀï ±¸µµ¸¦ öÀúÈ÷ ºÐ¼®ÇÏ¿© ½ÃÀå Á¡À¯À², »ç¾÷ Àü·«, Á¦Ç° Æ÷Æ®Æú¸®¿À, ÀÎÁõ, ±ÔÁ¦ ´ç±¹ ½ÂÀÎ, ƯÇã µ¿Çâ, ÁÖ¿ä ±â¾÷ÀÇ ±â¼ú Áøº¸ µîÀ» °ËÁõÇÕ´Ï´Ù.

5. Á¦Ç° °³¹ß ¹× Çõ½Å : ¹Ì·¡ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÃÖ÷´Ü ±â¼ú, R&D Ȱµ¿, Á¦Ç° Çõ½ÅÀ» °­Á¶ÇÕ´Ï´Ù.

¶ÇÇÑ ÀÌÇØ°ü°èÀÚ°¡ ÃæºÐÇÑ Á¤º¸¸¦ ¾ò°í ÀÇ»ç°áÁ¤À» ÇÒ ¼ö ÀÖµµ·Ï Áß¿äÇÑ Áú¹®¿¡ ´ë´äÇϰí ÀÖ½À´Ï´Ù.

1. ÇöÀç ½ÃÀå ±Ô¸ð¿Í ÇâÈÄ ¼ºÀå ¿¹ÃøÀº?

2. ÃÖ°íÀÇ ÅõÀÚ ±âȸ¸¦ Á¦°øÇÏ´Â Á¦Ç°, ºÎ¹® ¹× Áö¿ªÀº ¾îµðÀԴϱî?

3. ½ÃÀåÀ» Çü¼ºÇÏ´Â ÁÖ¿ä ±â¼ú µ¿Çâ°ú ±ÔÁ¦ÀÇ ¿µÇâÀº?

4. ÁÖ¿ä º¥´õÀÇ ½ÃÀå Á¡À¯À²°ú °æÀï Æ÷Áö¼ÇÀº?

5. º¥´õ ½ÃÀå ÁøÀÔ¡¤Ã¶¼ö Àü·«ÀÇ ¿øµ¿·ÂÀÌ µÇ´Â ¼öÀÍ¿ø°ú Àü·«Àû ±âȸ´Â ¹«¾ùÀΰ¡?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
      • ¼¼°è¿¡¼­ Àç»ý °¡´É ¿¡³ÊÁö ¹ßÀüÀ¸·ÎÀÇ ÀÌÇàÀÌ ÁøÇàµÈ´Ù
      • Á¤ºÎ±â°ü¿¡ ÀÇÇÑ Áö¼Ó°¡´ÉÇÑ ¿¡³ÊÁö°ü¸®¸¦ À§ÇÑ ±×¸°¿¡³ÊÁö ¸ñÇ¥¿Í ´ëó °­È­
    • ¾ïÁ¦¿äÀÎ
      • ´Ù¾çÇÑ ¿¡³ÊÁö ÀÚ¿ø°ú ´Ù¾çÇÑ ±â¼úÀ» ÅëÇÕÇÏ´Â º¹À⼺
    • ±âȸ
      • ¹èÅ͸® ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ(BESS)°ú °¡»ó ¹ßÀü¼ÒÀÇ ÅëÇÕ
      • EV¸¦ VPP¿¡ ÅëÇÕÇÔÀ¸·Î½á ¿¡³ÊÁö ¹èºÐÀ» ÃÖÀûÈ­ÇÏ¿© EV ¼ÒÀ¯ÀÇ ÀÌÁ¡À» Áõ´ë½ÃŲ´Ù
    • °úÁ¦
      • µ¥ÀÌÅÍÀÇ ÇÁ¶óÀ̹ö½Ã¿Í »çÀ̹ö º¸¾È¿¡ °üÇÑ ¹®Á¦
  • ½ÃÀå ¼¼ºÐÈ­ ºÐ¼®
    • ±â¼ú: ½Ç½Ã°£ ¹× ±â·ÏµÈ Àü·Â »ç¿ë·® µ¥ÀÌÅ͸¦ Á¦°øÇÔÀ¸·Î½á, °í±Þ °èÃø ÀÎÇÁ¶óÀÇ Á߿伺ÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù.
    • ¹èÆ÷ ¸ðµå : ¿ø°Ý ¾×¼¼½º, ÃÖ¼ÒÇÑÀÇ ÇöÀå IT ÀÎÇÁ¶ó, Áö¿øÀ¸·Î Ŭ¶ó¿ìµå ±â¹Ý °¡»ó ¹ßÀü¼Ò äÅà Ȯ´ë
    • Ä«Å×°í¸® : ¿¡³ÊÁöÀÇ ÀÚ¸³, ºñ¿ë Àý°¨, ȯ°æ»óÀÇ ÀÌÁ¡¿¡ ÀÇÇØ °¡Á¤¿ë ºÐ»êÇü ¹ßÀü±âÀÇ Àû¿ëÀÌ Áõ°¡
    • ÃÖÁ¾ »ç¿ëÀÚ : Á¤ºÎ ÅõÀÚ¿Í Àμ¾Æ¼ºê Áõ°¡·Î »ê¾÷ ºÎ¹®ÀÇ °¡»ó ¹ßÀü¼Ò ¼ö¿ä°¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù.
    • ÄÄÆ÷³ÍÆ®: ¿¡³ÊÁö ¹èºÐ ÃÖÀûÈ­¿Í ´ë·® µ¥ÀÌÅÍ Ã³¸®·Î VPP¿¡¼­ µ¥ÀÌÅÍ ºÐ¼® ÅøÀÇ Ã¤¿ëÀÌ Áõ°¡
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®
    • Á¤Ä¡Àû
    • °æÁ¦
    • »ç±³
    • ±â¼úÀû
    • ¹ý·ü»ó
    • ȯ°æ

Á¦6Àå °¡»ó ¹ßÀü¼Ò ½ÃÀå : ±â¼úº°

  • °í±Þ °èÃø ÀÎÇÁ¶ó
  • ¼ö¿äÀÀ´ä
  • À¯Åë»ý¼º
  • ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ

Á¦7Àå °¡»ó ¹ßÀü¼Ò ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

  • Çϵå¿þ¾î
    • ÀιöÅÍ
    • ¼¾¼­
    • ½º¸¶Æ® ¹ÌÅÍ
    • ÀúÀåÀåÄ¡
  • ¼­ºñ½º
  • ¼ÒÇÁÆ®¿þ¾î
    • µ¥ÀÌÅÍ ºÐ¼® µµ±¸
    • ¿¡³ÊÁö °ü¸® ½Ã½ºÅÛ
    • °¨½Ã¡¤Á¦¾î ½Ã½ºÅÛ

Á¦8Àå °¡»ó ¹ßÀü¼Ò ½ÃÀå : Àü°³ ¸ðµåº°

  • Ŭ¶ó¿ìµå
  • ¿ÂÇÁ·¹¹Ì½º

Á¦9Àå °¡»ó ¹ßÀü¼Ò ½ÃÀå : Ä«Å×°í¸®º°

  • ±¹³» ºÐ»êÇü ¹ßÀü±â
  • °ø°ø ºÐ»êÇü ¹ßÀü±â

Á¦10Àå °¡»ó ¹ßÀü¼Ò ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

  • »ó¾÷¿ë
  • »ê¾÷
  • ÁÖÅÿë

Á¦11Àå ¾Æ¸Þ¸®Ä«ÀÇ °¡»ó¹ßÀü¼Ò ½ÃÀå

  • ¾Æ¸£ÇîÆ¼³ª
  • ºê¶óÁú
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ¹Ì±¹

Á¦12Àå ¾Æ½Ã¾ÆÅÂÆò¾ç °¡»ó¹ßÀü¼Ò ½ÃÀå

  • È£ÁÖ
  • Áß±¹
  • Àεµ
  • Àεµ³×½Ã¾Æ
  • ÀϺ»
  • ¸»·¹À̽þÆ
  • Çʸ®ÇÉ
  • ½Ì°¡Æ÷¸£
  • Çѱ¹
  • ´ë¸¸
  • ű¹
  • º£Æ®³²

Á¦13Àå À¯·´¡¤Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ °¡»ó ¹ßÀü¼Ò ½ÃÀå

  • µ§¸¶Å©
  • ÀÌÁýÆ®
  • Çɶõµå
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • À̽º¶ó¿¤
  • ÀÌÅ»¸®¾Æ
  • ³×´ú¶õµå
  • ³ªÀÌÁö¸®¾Æ
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • īŸ¸£
  • ·¯½Ã¾Æ
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«
  • ½ºÆäÀÎ
  • ½º¿þµ§
  • ½ºÀ§½º
  • ÅÍŰ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • ¿µ±¹

Á¦14Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®, 2023³â
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2023³â
  • °æÀï ½Ã³ª¸®¿À ºÐ¼®
    • Toshiba¿Í ´ë¸¸ °ø¾÷ ±â¼ú Á¶»ç¿ø(ITRI)ÀÌ Çù·ÂÇØ, °¡»ó ¹ßÀü¼Ò ±â¼úÀÇ ¹ßÀüÀ» ¸ñÇ¥·Î ÇÑ´Ù
    • EnergyHub, VPP È®´ë¸¦ À§ÇØ 150¸¸ ´Þ·¯ÀÇ º¸Á¶±Ý È®º¸
    • Leapfrog Power, Inc.¿Í SWTCH Energy°¡ Á¦ÈÞÇØ, ´º¿å°ú ¸Å»çÃß¼¼Ã÷¿¡ °¡»ó ¹ßÀü¼Ò¸¦ Àü°³
    • Solnet Group, ±×¸®µåÀÇ ¾ÈÁ¤¼ºÀ» ³ôÀ̱â À§ÇØ °¡»ó ¹ßÀü¼Ò¿ë ¼Ö³Ý ¸Å´ÏÀú Ãâ½Ã
    • Renew HomeÀº 2020³â±îÁö 50GW¸¦ ¸ñÇ¥·Î ±×¸®µåÀÇ ¾ÈÁ¤¼º°ú È¿À²¼ºÀ» ³ôÀÌ´Â Çõ½ÅÀûÀÎ °¡»ó ¹ßÀü¼Ò¸¦ ½ÃÀÛÇß½À´Ï´Ù.
    • Sunnova Energy International Inc.´Â ÁÖÅà ž籤 ¹ßÀü°ú ÃàÀüÀÇ ÅëÇÕÀ¸·Î °¡»ó ¹ßÀü¼Ò ³×Æ®¿öÅ©¸¦ È®´ëÇß½À´Ï´Ù.
    • Leapfrog Power, Inc., °¡»ó ¹ßÀü¼ÒÀÇ È¿À²°ú ½Å·Ú¼ºÀ» ³ôÀ̴ ÷´Ü Ç÷§ÆûÀ» ¹ßÇ¥
    • Nokia Corporation, ¸ð¹ÙÀÏ Åë½Å»ç¾÷ÀÚ°¡ ¹é¾÷ ¹èÅ͸®¸¦ ¼öÀÍÈ­ÇØ ¹èÃâ·®À» »è°¨ÇÒ ¼ö ÀÖµµ·Ï ÇÏ´Â °¡»ó ¹ßÀü¼Ò ÄÁÆ®·Ñ·¯ ¼ÒÇÁÆ®¿þ¾î¸¦ ¹ßÇ¥
    • Swell Energy Inc., Renu Energy Àμö·Î °¡»ó ¹ßÀü¼Ò¸¦ È®´ëÇÏ¿© VPP ¿ë·®À» Áõ°­
    • Emeren Group, Áß±¹¿¡¼­ 10.76MWhÀÇ ¿¡³ÊÁö ÀúÀå Æ÷Æ®Æú¸®¿À Àμö
    • Shell PLC°¡ EGO SrlÀ» ÀμöÇÏ¿© VPP °ü¸®¸¦ °­È­Çϰí ÀÌÅ»¸®¾ÆÀÇ Àç»ý °¡´É ¿¡³ÊÁö¿Í Żź¼ÒÈ­ÀÇ ´ëó¸¦ °­È­
    • Leapfrog Power, Inc.°¡ °¡»ó ¹ßÀü¼Ò ¼ÒÇÁÆ®¿þ¾î ¼Ö·ç¼Ç È®Àå¿¡ 1,200¸¸ ´Þ·¯ÀÇ ÅõÀÚ¸¦ È®º¸
  • Àü·« ºÐ¼®°ú Á¦¾È
    • ABB Ltd.
    • Siemens AG
    • Honeywell International Inc.
    • Tesla, Inc.

±â¾÷ ¸ñ·Ï

  • ABB Ltd.
  • Acelerex, Inc.
  • AutoGrid Systems, Inc. by Uplight, Inc.
  • CGN Power Co.,Ltd
  • CPower
  • Emeren Group Ltd.
  • Enel SpA
  • Energy & Mataeo System GmbH
  • Enode AS
  • Equiwatt Limited
  • Evergen
  • Flexitricity Limited
  • Ford Motor Company
  • Generac Holdings Inc.
  • General Electric Company
  • General Motors Company
  • Haven Energy, Inc.
  • Hitachi, Ltd.
  • Honeywell International Inc.
  • Kraken Technologies Limited by Octopus Energy Group
  • Leapfrog Power, Inc.
  • Lumenaza GmbH
  • Mitsubishi Generator Co., Ltd.
  • Nokia Corporation
  • Olivine Inc.
  • Open Access Technology International, Inc.
  • Origin Energy Limited
  • Peak Power Inc.
  • Petrol dd, Ljubljana
  • Puget Sound Energy
  • Renew Home, LLC
  • Robert Bosch GmbH
  • Schneider Electric SE
  • Shell PLC
  • Siemens AG
  • Solnet Group BV
  • Span.IO, Inc.
  • SSE PLC
  • Statkraft AS
  • Stem Inc.
  • Sunnova Energy International, Inc.
  • Swell Energy Inc.
  • SwitchDin Pty Ltd.
  • Tesla, Inc.
  • The MathWorks, Inc.
  • Toshiba Corporation
  • TotalEnergies SE
  • Virtual Peaker
  • Virtual Power Plant Sp. z oo
  • Wartsila Corporation
JHS 24.12.12

The Virtual Power Plant Market was valued at USD 5.79 billion in 2023, expected to reach USD 7.04 billion in 2024, and is projected to grow at a CAGR of 22.48%, to USD 23.98 billion by 2030.

A Virtual Power Plant (VPP) aggregates decentralized energy resources to optimize power generation and consumption. This smart grid technology is essential for modern energy management, providing stability in electricity supply while integrating renewable energy sources. VPPs aim to enhance grid reliability by harnessing solar panels, wind turbines, and battery storage, thus reducing the reliance on centralized power plants. They find applications across residential, commercial, and industrial systems, allowing users to efficiently manage their energy needs and costs. Key end-users include utility companies, energy suppliers, and smart grid enablers. The increasing need for energy optimization and renewable energy integration significantly drives market growth. The VPP market is influenced by the global shift towards green energy, regulatory incentives for renewable integration, and advancements in energy management solutions. Emerging opportunities lie in developing cutting-edge software solutions for energy grid management and expanding VPPs in regions with untapped renewable sources. However, market growth faces challenges like high initial setup costs, cybersecurity concerns, and the complexity of managing diverse energy resources in real-time. The industry also encounters regulatory hurdles and the need for standardization in technology deployment. Innovations in artificial intelligence (AI) and machine learning (ML) offer promising pathways for enhancing predictive analytics and optimizing load management, contributing to grid stability. The market's competitive nature, with technological advancements and collaborations, presents numerous prospects for stakeholders. Investment in R&D, particularly in interoperability solutions and smart grid technologies, can unlock formidable growth potential. Companies should focus on developing user-friendly platforms for energy management and emphasize secure, reliable systems to cater to rising consumer demands. The VPP landscape leans towards integrating next-gen tech solutions to address energy efficiency, resiliency, and sustainability, marking it as a dynamic field for growth and innovation.

KEY MARKET STATISTICS
Base Year [2023] USD 5.79 billion
Estimated Year [2024] USD 7.04 billion
Forecast Year [2030] USD 23.98 billion
CAGR (%) 22.48%

Market Dynamics: Unveiling Key Market Insights in the Rapidly Evolving Virtual Power Plant Market

The Virtual Power Plant Market is undergoing transformative changes driven by a dynamic interplay of supply and demand factors. Understanding these evolving market dynamics prepares business organizations to make informed investment decisions, refine strategic decisions, and seize new opportunities. By gaining a comprehensive view of these trends, business organizations can mitigate various risks across political, geographic, technical, social, and economic domains while also gaining a clearer understanding of consumer behavior and its impact on manufacturing costs and purchasing trends.

  • Market Drivers
    • Rising shift toward renewable energy power generation across the world
    • Increasing green energy goals and initiatives for sustainable energy management by government entities
  • Market Restraints
    • Complexities in integrating diverse energy resources with varying technologies
  • Market Opportunities
    • Integration of battery energy storage systems (BESS) with virtual power plant
    • Integration of EVs into VPPs to optimize energy distribution and amplify EV ownership benefits
  • Market Challenges
    • Issues related to data privacy and cybersecurity concerns

Porter's Five Forces: A Strategic Tool for Navigating the Virtual Power Plant Market

Porter's five forces framework is a critical tool for understanding the competitive landscape of the Virtual Power Plant Market. It offers business organizations with a clear methodology for evaluating their competitive positioning and exploring strategic opportunities. This framework helps businesses assess the power dynamics within the market and determine the profitability of new ventures. With these insights, business organizations can leverage their strengths, address weaknesses, and avoid potential challenges, ensuring a more resilient market positioning.

PESTLE Analysis: Navigating External Influences in the Virtual Power Plant Market

External macro-environmental factors play a pivotal role in shaping the performance dynamics of the Virtual Power Plant Market. Political, Economic, Social, Technological, Legal, and Environmental factors analysis provides the necessary information to navigate these influences. By examining PESTLE factors, businesses can better understand potential risks and opportunities. This analysis enables business organizations to anticipate changes in regulations, consumer preferences, and economic trends, ensuring they are prepared to make proactive, forward-thinking decisions.

Market Share Analysis: Understanding the Competitive Landscape in the Virtual Power Plant Market

A detailed market share analysis in the Virtual Power Plant Market provides a comprehensive assessment of vendors' performance. Companies can identify their competitive positioning by comparing key metrics, including revenue, customer base, and growth rates. This analysis highlights market concentration, fragmentation, and trends in consolidation, offering vendors the insights required to make strategic decisions that enhance their position in an increasingly competitive landscape.

FPNV Positioning Matrix: Evaluating Vendors' Performance in the Virtual Power Plant Market

The Forefront, Pathfinder, Niche, Vital (FPNV) Positioning Matrix is a critical tool for evaluating vendors within the Virtual Power Plant Market. This matrix enables business organizations to make well-informed decisions that align with their goals by assessing vendors based on their business strategy and product satisfaction. The four quadrants provide a clear and precise segmentation of vendors, helping users identify the right partners and solutions that best fit their strategic objectives.

Strategy Analysis & Recommendation: Charting a Path to Success in the Virtual Power Plant Market

A strategic analysis of the Virtual Power Plant Market is essential for businesses looking to strengthen their global market presence. By reviewing key resources, capabilities, and performance indicators, business organizations can identify growth opportunities and work toward improvement. This approach helps businesses navigate challenges in the competitive landscape and ensures they are well-positioned to capitalize on newer opportunities and drive long-term success.

Key Company Profiles

The report delves into recent significant developments in the Virtual Power Plant Market, highlighting leading vendors and their innovative profiles. These include ABB Ltd., Acelerex, Inc., AutoGrid Systems, Inc. by Uplight, Inc., CGN Power Co.,Ltd, CPower, Emeren Group Ltd., Enel S.p.A., Energy & Mataeo System GmbH, Enode AS, Equiwatt Limited, Evergen, Flexitricity Limited, Ford Motor Company, Generac Holdings Inc., General Electric Company, General Motors Company, Haven Energy, Inc., Hitachi, Ltd., Honeywell International Inc., Kraken Technologies Limited by Octopus Energy Group, Leapfrog Power, Inc., Lumenaza GmbH, Mitsubishi Generator Co., Ltd., Nokia Corporation, Olivine Inc., Open Access Technology International, Inc., Origin Energy Limited, Peak Power Inc., Petrol d.d., Ljubljana, Puget Sound Energy, Renew Home, LLC, Robert Bosch GmbH, Schneider Electric SE, Shell PLC, Siemens AG, Solnet Group B.V., Span.IO, Inc., SSE PLC, Statkraft AS, Stem Inc., Sunnova Energy International, Inc., Swell Energy Inc., SwitchDin Pty Ltd., Tesla, Inc., The MathWorks, Inc., Toshiba Corporation, TotalEnergies SE, Virtual Peaker, Virtual Power Plant Sp. z o.o., and Wartsila Corporation.

Market Segmentation & Coverage

This research report categorizes the Virtual Power Plant Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Based on Technology, market is studied across Advanced Metering Infrastructure, Demand Response, Distribution Generation, and Energy Storage Systems.
  • Based on Component, market is studied across Hardware, Services, and Software. The Hardware is further studied across Inverters, Sensors, Smart Meters, and Storage Devices. The Software is further studied across Data Analytics Tools, Energy Management Systems, and Monitoring & Control Systems.
  • Based on Deployment Mode, market is studied across Cloud and On-premises.
  • Based on Category, market is studied across Domestic Distributed Generator and Public Distributed Generator.
  • Based on End User, market is studied across Commercial, Industrial, and Residential.
  • Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

The report offers a comprehensive analysis of the market, covering key focus areas:

1. Market Penetration: A detailed review of the current market environment, including extensive data from top industry players, evaluating their market reach and overall influence.

2. Market Development: Identifies growth opportunities in emerging markets and assesses expansion potential in established sectors, providing a strategic roadmap for future growth.

3. Market Diversification: Analyzes recent product launches, untapped geographic regions, major industry advancements, and strategic investments reshaping the market.

4. Competitive Assessment & Intelligence: Provides a thorough analysis of the competitive landscape, examining market share, business strategies, product portfolios, certifications, regulatory approvals, patent trends, and technological advancements of key players.

5. Product Development & Innovation: Highlights cutting-edge technologies, R&D activities, and product innovations expected to drive future market growth.

The report also answers critical questions to aid stakeholders in making informed decisions:

1. What is the current market size, and what is the forecasted growth?

2. Which products, segments, and regions offer the best investment opportunities?

3. What are the key technology trends and regulatory influences shaping the market?

4. How do leading vendors rank in terms of market share and competitive positioning?

5. What revenue sources and strategic opportunities drive vendors' market entry or exit strategies?

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Rising shift toward renewable energy power generation across the world
      • 5.1.1.2. Increasing green energy goals and initiatives for sustainable energy management by government entities
    • 5.1.2. Restraints
      • 5.1.2.1. Complexities in integrating diverse energy resources with varying technologies
    • 5.1.3. Opportunities
      • 5.1.3.1. Integration of battery energy storage systems (BESS) with virtual power plant
      • 5.1.3.2. Integration of EVs into VPPs to optimize energy distribution and amplify EV ownership benefits
    • 5.1.4. Challenges
      • 5.1.4.1. Issues related to data privacy and cybersecurity concerns
  • 5.2. Market Segmentation Analysis
    • 5.2.1. Technology: Rising significance of advanced metering infrastructure due to providing real-time and recorded electricity usage data
    • 5.2.2. Deployment Mode: Growing adoption of cloud-based virtual power plants due to remote access, minimal on-site IT infrastructure, and support
    • 5.2.3. Category: Rising application of domestic distributed generators owing to energy autonomy, cost savings, and environmental benefits
    • 5.2.4. End User: Growing demand for virtual power plants from the industrial sector due to growing government investments and incentives
    • 5.2.5. Component: Growing adoption of data analytics tools in VPP owing to optimize energy distribution and processing of large volume data
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. Virtual Power Plant Market, by Technology

  • 6.1. Introduction
  • 6.2. Advanced Metering Infrastructure
  • 6.3. Demand Response
  • 6.4. Distribution Generation
  • 6.5. Energy Storage Systems

7. Virtual Power Plant Market, by Component

  • 7.1. Introduction
  • 7.2. Hardware
    • 7.2.1. Inverters
    • 7.2.2. Sensors
    • 7.2.3. Smart Meters
    • 7.2.4. Storage Devices
  • 7.3. Services
  • 7.4. Software
    • 7.4.1. Data Analytics Tools
    • 7.4.2. Energy Management Systems
    • 7.4.3. Monitoring & Control Systems

8. Virtual Power Plant Market, by Deployment Mode

  • 8.1. Introduction
  • 8.2. Cloud
  • 8.3. On-premises

9. Virtual Power Plant Market, by Category

  • 9.1. Introduction
  • 9.2. Domestic Distributed Generator
  • 9.3. Public Distributed Generator

10. Virtual Power Plant Market, by End User

  • 10.1. Introduction
  • 10.2. Commercial
  • 10.3. Industrial
  • 10.4. Residential

11. Americas Virtual Power Plant Market

  • 11.1. Introduction
  • 11.2. Argentina
  • 11.3. Brazil
  • 11.4. Canada
  • 11.5. Mexico
  • 11.6. United States

12. Asia-Pacific Virtual Power Plant Market

  • 12.1. Introduction
  • 12.2. Australia
  • 12.3. China
  • 12.4. India
  • 12.5. Indonesia
  • 12.6. Japan
  • 12.7. Malaysia
  • 12.8. Philippines
  • 12.9. Singapore
  • 12.10. South Korea
  • 12.11. Taiwan
  • 12.12. Thailand
  • 12.13. Vietnam

13. Europe, Middle East & Africa Virtual Power Plant Market

  • 13.1. Introduction
  • 13.2. Denmark
  • 13.3. Egypt
  • 13.4. Finland
  • 13.5. France
  • 13.6. Germany
  • 13.7. Israel
  • 13.8. Italy
  • 13.9. Netherlands
  • 13.10. Nigeria
  • 13.11. Norway
  • 13.12. Poland
  • 13.13. Qatar
  • 13.14. Russia
  • 13.15. Saudi Arabia
  • 13.16. South Africa
  • 13.17. Spain
  • 13.18. Sweden
  • 13.19. Switzerland
  • 13.20. Turkey
  • 13.21. United Arab Emirates
  • 13.22. United Kingdom

14. Competitive Landscape

  • 14.1. Market Share Analysis, 2023
  • 14.2. FPNV Positioning Matrix, 2023
  • 14.3. Competitive Scenario Analysis
    • 14.3.1. Toshiba and Taiwan's Industrial Technology Research Institute(ITRI) collaborate to advance virtual power plant technologies
    • 14.3.2. EnergyHub secures USD 1.5 million grant to expand VPPs
    • 14.3.3. Leapfrog Power, Inc. and SWTCH Energy partner to deploy virtual power plants in New York and Massachusetts
    • 14.3.4. Solnet Group launches Solnet Manager for virtual power plant to enhance grid stability
    • 14.3.5. Renew Home launches innovative Virtual Power Plant for grid stability and efficiency with a targeted 50 GW by 2030
    • 14.3.6. Sunnova Energy International Inc. expands its virtual power plant network with residential solar and storage integration
    • 14.3.7. Leapfrog Power, Inc. launches advanced platform to boost efficiency and reliability of virtual power plants
    • 14.3.8. Nokia Corporation launches Virtual Power Plant Controller Software enabling mobile operators to monetize backup batteries and reduce emissions
    • 14.3.9. Swell Energy Inc. expands virtual power plant with Renu Energy acquisition to boost VPP capacity
    • 14.3.10. Emeren Group successfully acquired a 10.76 MWh energy storage portfolio in China
    • 14.3.11. Shell PLC acquires EGO S.r.l. to enhance VPP management and bolster Italy's renewable energy and decarbonization efforts
    • 14.3.12. Leapfrog Power, Inc. secures USD 12 million investment to expand virtual power plant software solution
  • 14.4. Strategy Analysis & Recommendation
    • 14.4.1. ABB Ltd.
    • 14.4.2. Siemens AG
    • 14.4.3. Honeywell International Inc.
    • 14.4.4. Tesla, Inc.

Companies Mentioned

  • 1. ABB Ltd.
  • 2. Acelerex, Inc.
  • 3. AutoGrid Systems, Inc. by Uplight, Inc.
  • 4. CGN Power Co.,Ltd
  • 5. CPower
  • 6. Emeren Group Ltd.
  • 7. Enel S.p.A.
  • 8. Energy & Mataeo System GmbH
  • 9. Enode AS
  • 10. Equiwatt Limited
  • 11. Evergen
  • 12. Flexitricity Limited
  • 13. Ford Motor Company
  • 14. Generac Holdings Inc.
  • 15. General Electric Company
  • 16. General Motors Company
  • 17. Haven Energy, Inc.
  • 18. Hitachi, Ltd.
  • 19. Honeywell International Inc.
  • 20. Kraken Technologies Limited by Octopus Energy Group
  • 21. Leapfrog Power, Inc.
  • 22. Lumenaza GmbH
  • 23. Mitsubishi Generator Co., Ltd.
  • 24. Nokia Corporation
  • 25. Olivine Inc.
  • 26. Open Access Technology International, Inc.
  • 27. Origin Energy Limited
  • 28. Peak Power Inc.
  • 29. Petrol d.d., Ljubljana
  • 30. Puget Sound Energy
  • 31. Renew Home, LLC
  • 32. Robert Bosch GmbH
  • 33. Schneider Electric SE
  • 34. Shell PLC
  • 35. Siemens AG
  • 36. Solnet Group B.V.
  • 37. Span.IO, Inc.
  • 38. SSE PLC
  • 39. Statkraft AS
  • 40. Stem Inc.
  • 41. Sunnova Energy International, Inc.
  • 42. Swell Energy Inc.
  • 43. SwitchDin Pty Ltd.
  • 44. Tesla, Inc.
  • 45. The MathWorks, Inc.
  • 46. Toshiba Corporation
  • 47. TotalEnergies SE
  • 48. Virtual Peaker
  • 49. Virtual Power Plant Sp. z o.o.
  • 50. Wartsila Corporation
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦