시장보고서
상품코드
1804613

에이전틱 AI 시장 : 구성요소별, 유형별, 전개 방식별, 용도별, 최종 이용 업계별, 기업 규모별 - 세계 예측(2025-2030년)

Agentic AI Market by Component, Type, Deployment Mode, Application, End User Industry, Enterprise Size - Global Forecast 2025-2030

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 188 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

에이전틱 AI 시장은 2024년에 52억 9,000만 달러로 평가되었으며, 2025년에는 CAGR 27.12%로 66억 5,000만 달러로 성장하여 2030년에는 223억 5,000만 달러에 달할 것으로 예측됩니다.

주요 시장 통계
기준 연도 2024년 52억 9,000만 달러
추정 연도 2025년 66억 5,000만 달러
예측 연도 2030년 223억 5,000만 달러
CAGR(%) 27.12%

현대 기업에서 에이전틱 AI의 등장과 전략적 의사결정과 업무 효율성을 혁신할 수 있는 가능성을 살펴봅니다.

에이전틱 AI는 인간의 직접적인 지시 없이도 행동을 시작할 수 있는 자율성을 시스템에 부여함으로써 기존 자동화의 경계를 넘어서는 패러다임의 전환을 의미합니다. 이 새로운 AI 카테고리는 복잡한 업무 워크플로우를 최적화하고 조직 내 효율성과 전략적 선견지명을 향상시킬 수 있는 자기 주도적 적응형 학습 및 의사결정 기능을 통해 나타납니다. 점점 더 많은 기업들이 데이터 기반 인사이트를 바탕으로 지속적으로 행동을 개선할 수 있는 에이전트를 도입하는 것에 대한 경쟁적 고려 사항을 인식함에 따라, 이러한 변화를 형성하는 기술적, 규제적, 조직적 요인을 이해하는 것이 중요해지고 있습니다.

세계 AI 환경을 형성하고, 차세대 기술 혁신과 가치 창출을 촉진하는 변혁적 변화를 파악합니다.

인공지능 환경은 기술적 혁신, 진화하는 규제 상황, 그리고 새로운 비즈니스 요구의 수렴으로 인해 혁신적인 변화를 맞이하고 있습니다. 지난 2년 동안 자연어 이해와 강화학습 알고리즘의 개선으로 규칙 기반 자동화에서 목표에 맞게 스스로 최적화하는 진정한 에이전트 기능으로의 전환이 가속화되고 있습니다. 한편, 로우코드 개발 플랫폼의 도입으로 지능형 에이전트의 프로토타입 제작 및 배포가 더욱 빨라지고, 데이터 과학자와 운영팀 간의 기존 장벽이 줄어들었습니다.

2025년 미국 관세 조정이 에이전틱 AI 생태계와 크로스보더 기술 공급망에 미치는 누적 영향 평가

2025년 미국 관세 갱신 발표는 에이전틱 AI 생태계 이해관계자들에게 중요한 변수를 가져옵니다. 광범위한 반도체, 첨단 센서, 특정 소프트웨어 라이선스 계약을 대상으로 하는 이러한 조치는 하드웨어 조달 및 구독 모델 전반에 걸쳐 비용 압박을 가하고 있습니다. 그 결과, 기술 구매자들은 공급망 구성을 재평가하고 있으며, 일부 구매자들은 관세 변동에 대한 노출을 줄이기 위해 부품 조달을 지역화하는 것을 선택하기도 합니다.

핵심 시장 세분화를 통해 실용적인 인사이트를 얻고, 서비스 구성요소의 전개 방식와 애플리케이션 영역의 주요 추진 요인을 파악할 수 있습니다.

시장 세분화의 뉘앙스를 이해하면 에이전틱 AI 영역에서 채택과 가치 창출을 촉진하는 근본적인 역학을 이해할 수 있습니다. 컴포넌트 분석은 고급 알고리즘 오케스트레이션을 가능하게 하는 완전 통합 소프트웨어 플랫폼과 지속적인 최적화를 위한 매니지드 서비스 및 시스템 설계 및 커스터마이징을 위한 전문 서비스를 포함한 종합적인 서비스 번들을 구분합니다. 번들을 구분합니다. 이러한 소프트웨어와 서비스 모두에 중점을 둠으로써 조직은 성숙도 수준에 맞는 엔드 투 엔드 솔루션에 접근할 수 있습니다.

심층 시장 침투도 분석별, 아메리카, 유럽, 중동 및 아프리카, 아시아태평양 역학 및 성장 패턴 분석

각 지역의 역학관계는 에이전틱 AI 도입의 궤적을 형성하는 데 매우 중요한 역할을 합니다. 아메리카에서는 클라우드 인프라에 대한 광범위한 투자와 함께 잘 구축된 혁신 생태계가 초기 채택을 촉진하고 있습니다. 이 대륙의 조직들은 특히 북미의 주요 연구 대학과 기술 허브에서 개념 증명 이니셔티브를 가속화할 수 있는 세제 혜택과 탄탄한 스타트업 환경의 혜택을 누리고 있습니다.

에이전틱 AI 혁명에 도전하는 업계 선도 기업의 경쟁 우위 및 시장 차별화 전략 검증

경쟁 상황을 이해하기 위해서는 전략적 투자, 제휴, 기술 진보를 통해 에이전틱 AI 분야를 형성하고 있는 주요 기업 프로파일링이 필요합니다. 통합 클라우드 플랫폼을 보유한 세계 기술 대기업은 워크플로우 오케스트레이션 툴에 자율 에이전트를 통합하여 AI 서비스 포트폴리오를 지속적으로 확장하고 있습니다. 이들 기업은 광범위한 개발자 커뮤니티와 강력한 컴플라이언스 프레임워크를 활용하여 엄격한 규제 요건이 요구되는 분야에 대응하고 있습니다.

지속가능한 성장을 위해 에이전틱 AI를 활용하는 업계 리더를 지원하기 위한 실행 가능한 권장 사항 수립 운영 우수성 및 전략적 민첩성

에이전틱 AI의 변혁적 잠재력을 활용하기 위해 업계 리더들은 혁신과 거버넌스의 균형을 맞추는 구조적 접근 방식을 채택해야 합니다. AI 센터 오브 엑설런스(AI Center of Excellence)를 설립하여 전략적 모니터링을 일원화하고, 자율 에이전트가 기업 목표와 윤리 기준에 부합하도록 할 수 있습니다. 이 거버넌스 조직은 명확한 성과 지표, 리스크 관리 프로토콜, 그리고 지속적인 개선 주기를 알리는 투명성 요건을 정의해야 합니다.

양적 데이터, 질적 인사이트, 전문가 검증을 통합한 엄격한 다단계 조사 방법론의 세부 사항을 통해 분석의 완전성을 보장합니다.

이 분석은 분석의 완전성과 실용적 타당성을 보장하기 위해 고안된 엄격한 다단계 조사 방법을 기반으로 합니다. 초기 단계에서는 학술지, 특허 출원, 오픈 소스 리포지토리를 광범위하게 검토하여 에이전틱 AI 알고리즘과 아키텍처의 진화를 매핑했습니다. 2차 조사 단계에서는 지난 5년 동안 발표된 수백 개의 관련 기술 논문과 백서를 분류했습니다.

에이전틱 AI 시장 조사에서 얻은 주요 인사이트를 통합하여 전략적 중요 사항, 새로운 비즈니스 기회, 위험 감소에 대한 인사이트를 강조합니다.

에이전틱 AI 연구는 자율적 의사결정, 적응성, 기능을 넘어선 전략적 통합으로 정의되는 기술 과제를 밝혀냈습니다. 새로운 관세 제도의 영향부터 구성요소, 배포 형태, 용도, 최종사용자 산업 전반에 걸친 세분화의 복잡성까지, 명확한 스토리가 드러납니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 역학

제6장 시장 인사이트

  • Porter's Five Forces 분석
  • PESTEL 분석

제7장 미국 관세의 누적 영향 2025

제8장 에이전틱 AI 시장 : 구성요소별

  • 서비스
    • 매니지드 서비스
    • 전문 서비스
  • 소프트웨어

제9장 에이전틱 AI 시장 : 유형별

  • 하이브리드 에이전트
  • 프로액티브 에이전트
  • 리액티브 에이전트

제10장 에이전틱 AI 시장 : 전개 방식별

  • 클라우드
    • 프라이빗 클라우드
    • 퍼블릭 클라우드
  • 온프레미스

제11장 에이전틱 AI 시장 : 용도별

  • 컨텐츠 생성
  • 고객 서비스
  • 의사결정 지원
    • 예측 분석
    • 처방적 분석
  • 비디오 분석

제12장 에이전틱 AI 시장 : 최종 이용 업계별

  • 은행, 금융 서비스, 보험
    • 은행 업무
    • 자본 시장
    • 보험
  • 헬스케어
  • 소매

제13장 에이전틱 AI 시장 : 기업 규모별

  • 대기업
  • 중소기업

제14장 아메리카의 에이전틱 AI 시장

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 아르헨티나

제15장 유럽, 중동 및 아프리카의 에이전틱 AI 시장

  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 아랍에미리트
  • 사우디아라비아
  • 남아프리카공화국
  • 덴마크
  • 네덜란드
  • 카타르
  • 핀란드
  • 스웨덴
  • 나이지리아
  • 이집트
  • 튀르키예
  • 이스라엘
  • 노르웨이
  • 폴란드
  • 스위스

제16장 아시아태평양의 에이전틱 AI 시장

  • 중국
  • 인도
  • 일본
  • 호주
  • 한국
  • 인도네시아
  • 태국
  • 필리핀
  • 말레이시아
  • 싱가포르
  • 베트남
  • 대만

제17장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Accenture PLC
    • Adept AI Labs Inc.
    • Agentico Ltd.
    • Amazon Web Services, Inc.
    • C3.ai, Inc.
    • Clarion Analytics
    • Clarion Technologies
    • Cognizant Technology Solutions Corporation
    • Coupa Software Incorporated
    • Endava plc
    • Google LLC by Alphabet Inc.
    • International Business Machines Corporation
    • Microsoft Corporation
    • NVIDIA Corporation
    • Oracle Corporation
    • Put It Forward Inc.
    • qBotica Inc.
    • Salesforce, Inc.
    • Siemens AG
    • UiPath, Inc.
    • Zycus Inc.
    • ServiceNow, Inc.

제18장 리서치 AI

제19장 리서치 통계

제20장 리서치 컨택트

제21장 리서치 기사

제22장 부록

KSM 25.09.11

The Agentic AI Market was valued at USD 5.29 billion in 2024 and is projected to grow to USD 6.65 billion in 2025, with a CAGR of 27.12%, reaching USD 22.35 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 5.29 billion
Estimated Year [2025] USD 6.65 billion
Forecast Year [2030] USD 22.35 billion
CAGR (%) 27.12%

Exploring the Emergence of Agentic AI in Modern Enterprises and Its Potential to Transform Strategic Decision Making and Operational Efficiency

Agentic artificial intelligence represents a paradigm shift that transcends the boundaries of conventional automation by granting systems the autonomy to initiate actions without direct human instruction. This emerging category of AI manifests through self-directed adaptive learning and decision-making capabilities that can optimize complex operational workflows, enhancing both efficiency and strategic foresight within an organization. As more enterprises recognize the competitive advantage of deploying agents that can continuously refine their behavior based on data-driven insights, it becomes critical to understand the technological, regulatory, and organizational factors shaping this transformation.

In this executive summary, we introduce the complex interplay between software solutions and service offerings, where comprehensive service portfolios span managed and professional services while software applications drive intelligent process automation. We distinguish between agentic AI implementations categorized as hybrid agents combining human oversight with algorithmic autonomy, proactive agents anticipating outcomes before they occur, and reactive agents responding dynamically to real-time inputs. Deployment considerations range from versatile cloud environments-including both private and public cloud architectures-to secure on-premises installations. Application domains extend from content generation and customer engagement enhancements to advanced decision support leveraging predictive and prescriptive analytics, and even video analytics for real-time visual intelligence. Industry adoption encompasses traditional banking, capital markets, and insurance sectors alongside healthcare providers and retail enterprises, with differentiated strategies for large enterprises and small to medium enterprises.

By framing agentic AI within these multifaceted dimensions, this report lays a robust foundation for understanding the strategic imperatives and transformative potential poised to reshape technology road maps and business models across every sector.

Identifying the Transformative Shifts Reshaping the Global AI Landscape and Driving the Next Wave of Technological Innovation and Value Creation

The landscape of artificial intelligence is undergoing transformative shifts driven by a convergence of technological breakthroughs, evolving regulatory frameworks, and new business imperatives. Over the last two years, improvements in natural language understanding and reinforcement learning algorithms have accelerated the transition from rule-based automation to truly agentic capabilities that self-optimize against objectives. Meanwhile, the adoption of low-code development platforms has empowered organizations to prototype and deploy intelligent agents more rapidly, reducing the traditional barriers between data scientists and operational teams.

Furthermore, as data privacy regulations mature and cloud sovereignty initiatives gain traction, technology leaders are rethinking their architectures to ensure compliance while preserving agility. This dynamic interplay between regulatory pressure and innovation has prompted an increase in hybrid cloud strategies that balance control with scalability. Simultaneously, the integration of agentic AI with Internet of Things networks and edge computing platforms is redefining how real-time analytics inform decision-making at scale, unlocking opportunities for predictive maintenance in manufacturing and autonomous routing in logistics.

Consequently, enterprises are adopting new governance models for autonomous systems, establishing ethical guardrails and risk management protocols to ensure transparency and accountability. These evolving paradigms are not only reshaping operational workflows but also influencing talent strategies, as organizations seek professionals adept at orchestrating cross-functional teams capable of marrying AI capabilities with domain expertise. In this environment, the interplay of technological advancements, regulatory shifts, and organizational adaptation forms the crucible in which agentic AI will prove its strategic value.

Assessing the Cumulative Impact of United States Tariff Adjustments in 2025 on Agentic AI Ecosystems and Cross Border Technology Supply Chains

The announcement of updated United States tariffs in 2025 introduces a critical variable for stakeholders in the agentic AI ecosystem. By targeting a broad array of semiconductors, advanced sensors, and certain software licensing agreements, these measures have created cost pressures across hardware procurement and subscription models. Consequently, technology buyers are reevaluating supply chain configurations, with some opting to regionalize component sourcing to mitigate exposure to tariff volatility.

In practice, multinational corporations have responded by establishing strategic partnerships with regional contract manufacturers and data center operators to secure preferential procurement channels. At the same time, cloud service providers have adjusted their expansion plans by selectively investing in data center capacity within regions subject to lower duties. This realignment aims to shelter enterprises from border-tax fluctuations while preserving the performance and reliability demands of agentic AI workloads.

Moreover, the ripple effect of tariff policy has accelerated discussions around on-premises deployments versus cloud migrations. Organizations with existing infrastructure now face a cost-benefit analysis that weighs the upfront investment in localized hardware against the subscription dynamics of third-party platforms subject to tariff-inflated pricing. Investors and technology leaders are closely monitoring these developments, recognizing that supply chain resilience and pricing predictability will become defining factors in vendor selection and deployment strategy over the next three years.

Ultimately, the cumulative impact of United States tariff adjustments in 2025 underscores the importance of agile procurement strategies and diversified supplier ecosystems as organizations navigate an increasingly complex international trade environment.

Deriving Actionable Insights from Core Market Segmentation to Illuminate Key Drivers in Services Component Deployment Modes and Application Domains

A nuanced understanding of market segmentation reveals the underlying dynamics that drive adoption and value creation in the agentic AI domain. Component analysis distinguishes between fully integrated software platforms-enabling advanced algorithmic orchestration-and comprehensive service bundles that include both managed services for ongoing optimization and professional services for system design and customization. This dual focus on software and services ensures that organizations can access end-to-end solutions tailored to their maturity level.

Simultaneously, agentic AI offerings diverge into three primary types: hybrid agents that seamlessly blend human decision oversight with autonomous execution; proactive agents that analyze historical and real-time data to anticipate outcomes before they transpire; and reactive agents that excel in dynamic environments by responding instantly to new inputs. Each agent type appeals to different operational profiles, with hybrid models often favored by risk-sensitive industries and proactive designs adopted by sectors prioritizing predictive accuracy.

Deployment mode is equally critical, spanning public and private cloud infrastructures as well as traditional on-premises installations. The choice between these environments reflects an organization's tolerance for data sovereignty considerations, performance requirements, and integration complexity. In many cases, private cloud configurations serve as a middle ground, delivering enhanced governance controls without sacrificing scalability.

When it comes to applications, the spectrum ranges from automated content generation that streamlines marketing workflows to sophisticated customer service virtual assistants. Decision support systems further subdivide into predictive analytics that identify future trends and prescriptive analytics that recommend concrete actions. Meanwhile, video analytics platforms leverage computer vision to deliver real-time operational insights.

Lastly, end user industries span the banking, capital markets, and insurance segments where risk management prevails; healthcare environments focused on patient outcome optimization; and retail contexts aiming to personalize consumer experiences. These solutions cater to both large enterprise deployments and the agile needs of small and medium enterprises, highlighting the breadth of market opportunity and the necessity of tailored go-to-market approaches.

Uncovering Regional Dynamics and Growth Patterns across the Americas, Europe Middle East Africa, and Asia Pacific with Deep Market Penetration Analysis

Regional dynamics play a pivotal role in shaping the trajectory of agentic AI adoption, as each geography presents distinct regulatory, economic, and technological factors. In the Americas, widespread cloud infrastructure investments coupled with established innovation ecosystems drive early adoption. Organizations on this continent benefit from supportive tax credits and a robust startup landscape that accelerates proof-of-concept initiatives, particularly within North America's leading research universities and technology hubs.

Europe, the Middle East, and Africa exhibit a different yet complementary pattern. In Europe, stringent data protection regulations have catalyzed the development of advanced privacy-preserving AI techniques, leading enterprises to integrate federated learning and next-generation encryption protocols. The Middle East is experiencing rapid digital transformation fueled by sovereign wealth funds investing in smart city initiatives, while Africa demonstrates a leapfrogging phenomenon through mobile-first deployments and regional innovation clusters that address unique infrastructure challenges.

Across the Asia Pacific region, a blend of mature markets and emerging economies defines the competitive landscape. Nations such as Japan and South Korea drive hardware innovation with established semiconductor industries, whereas China's accelerated rollout of 5G networks underpins large-scale agentic AI trials in manufacturing and logistics. India's burgeoning technology services sector focuses on customizing agentic solutions for enterprise resource planning and customer service automation.

Collectively, these three regional segments underscore the importance of tailored market entry strategies. By aligning with local regulatory frameworks, infrastructure capabilities, and innovation priorities, organizations can maximize uptake and realize the full potential of autonomous AI technologies across diverse economic environments.

Examining Leading Industry Players Navigating the Agentic AI Revolution and Their Strategies for Competitive Advantage and Market Differentiation

Understanding the competitive landscape requires profiling the key organizations that are shaping the agentic AI arena through strategic investments, partnerships, and technology advancements. Global technology conglomerates with integrated cloud platforms continue to expand their AI service portfolios by embedding autonomous agents into workflow orchestration tools. These enterprises leverage extensive developer communities and robust compliance frameworks to cater to sectors with stringent regulatory requirements.

At the same time, specialized system integrators differentiate themselves by offering vertical-focused implementations that combine domain expertise with tailored agentic AI modules. Their ability to deliver turnkey solutions has made them preferred partners for industries such as healthcare and financial services, where stringent performance and security demands prevail. Emerging pure-play AI startups further enrich the ecosystem by pioneering novel agentic algorithms and contributing open source libraries that accelerate community innovation.

Collaborative ecosystems are another defining feature of this market. Industry consortia and research partnerships between academia and commercial providers drive proof-of-concept demonstrations and establish interoperability standards for agentic systems. By engaging in joint sandbox environments and standards bodies, leading companies ensure that their solutions can integrate seamlessly within multi-vendor architectures.

As competitive pressures intensify, we observe a growing trend of strategic alliances between technology vendors and managed service providers. This model enables continuous optimization of deployed agents through iterative feedback loops and deep domain knowledge infusion. Organizations seeking to navigate the evolving vendor landscape should prioritize partners with proven capabilities in scaling agentic deployments and a track record of fostering open collaboration across diverse stakeholder groups.

Formulating Actionable Recommendations to Empower Industry Leaders in Harnessing Agentic AI for Sustainable Growth Operational Excellence and Strategic Agility

To harness the transformative potential of agentic AI, industry leaders must adopt a structured approach that balances innovation with governance. Establishing an AI center of excellence can centralize strategic oversight, ensuring that autonomous agents align with corporate objectives and ethical standards. This governance body should define clear performance metrics, risk management protocols, and transparency requirements that inform continuous improvement cycles.

Concurrently, organizations should invest in upskilling programs that cultivate cross-disciplinary talent capable of designing, deploying, and maintaining agentic systems. By blending data science, software engineering, and domain expertise, teams can iterate more rapidly and deliver solutions that address nuanced operational challenges. In parallel, engaging with academic institutions and industry alliances accelerates knowledge transfer and fosters a culture of experimentation.

From an infrastructure perspective, adopting a hybrid deployment strategy that combines private cloud environments for sensitive workloads with public cloud scalability can optimize both cost and compliance. This dual-track approach enables organizations to allocate resources dynamically, responding swiftly to changes in demand while preserving control over critical data assets.

Finally, forging partnerships with ecosystem players-including sensor manufacturers, edge computing providers, and cybersecurity specialists-ensures that agentic AI deployments remain resilient and interoperable. Through collaborative innovation, firms can co-create reference architectures and integrate best-in-class components, thereby minimizing integration risks and accelerating time to value.

Detailing a Rigorous Multi Stage Research Methodology Integrating Quantitative Data, Qualitative Insights, and Expert Validation to Ensure Analytical Integrity

This analysis rests on a rigorous multi-stage research methodology designed to ensure both analytical integrity and practical relevance. The initial phase comprised an extensive review of academic journals, patent filings, and open source repositories to map the evolution of agentic AI algorithms and architectures. During this secondary research stage, we cataloged hundreds of relevant technical papers and white papers published over the past five years.

Simultaneously, we conducted a series of in-depth interviews with C-level executives, technology leaders, and domain experts across multiple industries, including financial services, healthcare, and retail. These conversations yielded qualitative insights into adoption drivers, integration challenges, and organizational readiness factors. To complement these findings, we deployed structured surveys targeting IT decision makers to quantify priorities related to governance, deployment mode preferences, and application areas.

Subsequent data triangulation ensured that our segmentation analysis and regional insights were grounded in both empirical evidence and practitioner experience. We applied advanced analytics techniques to identify correlations between technology maturity levels and deployment outcomes. Finally, all preliminary conclusions underwent validation through expert workshops, where stakeholders reviewed our interpretations and provided feedback to refine the final framework.

By combining quantitative rigor with qualitative depth, this methodology delivers a comprehensive perspective on the agentic AI market that supports strategic decision making.

Synthesizing Core Findings from the Agentic AI Market Study to Highlight Strategic Imperatives, Emerging Opportunities, and Risk Mitigation Considerations

The study of agentic artificial intelligence reveals a technology agenda defined by autonomous decision making, adaptability, and strategic integration across functions. From the influence of new tariff regimes to the intricacies of segmentation across components, deployment modes, applications, and end user industries, a clear narrative emerges: organizations that proactively embrace agentic capabilities will gain differentiated operational agility and competitive resilience.

Regional analysis underscores the importance of localizing both technology and strategy to align with diverse regulatory, infrastructural, and cultural contexts. Equally, profiling leading vendors illustrates that success hinges on ecosystem partnerships and a balanced mix of service excellence and software innovation. Actionable recommendations highlight the need for robust governance frameworks, targeted talent development, and hybrid deployment architectures that optimize cost and performance.

As enterprises stand at the threshold of widespread agentic AI adoption, they must prioritize iterative experimentation, cross-functional collaboration, and transparent risk management protocols. By doing so, they can transform how decisions are made, processes are executed, and value is created. The insights presented in this report equip senior leaders with the strategic clarity required to navigate the complexities of an autonomous future.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Enterprise adoption of agentic AI assistants to automate cross-functional workflows
  • 5.2. Emergence of self-governing agentic AI models for dynamic real-time decision-making processes
  • 5.3. Integration of agentic AI with IoT networks to enable autonomous industrial asset monitoring
  • 5.4. Regulatory frameworks evolving to address ethical concerns in agentic AI-driven autonomous systems
  • 5.5. Advancements in explainable agentic AI algorithms to enhance transparency in automated operations
  • 5.6. Growth of agentic AI-enabled robotic process automation in financial services risk management
  • 5.7. Emergence of agentic AI platforms enabling cross functional collaboration and autonomous project management
  • 5.8. Innovations in continuous learning mechanisms for adaptive agentic AI in dynamic environments

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Agentic AI Market, by Component

  • 8.1. Introduction
  • 8.2. Services
    • 8.2.1. Managed Services
    • 8.2.2. Professional Services
  • 8.3. Software

9. Agentic AI Market, by Type

  • 9.1. Introduction
  • 9.2. Hybrid Agents
  • 9.3. Proactive Agents
  • 9.4. Reactive Agents

10. Agentic AI Market, by Deployment Mode

  • 10.1. Introduction
  • 10.2. Cloud
    • 10.2.1. Private Cloud
    • 10.2.2. Public Cloud
  • 10.3. On Premises

11. Agentic AI Market, by Application

  • 11.1. Introduction
  • 11.2. Content Generation
  • 11.3. Customer Service
  • 11.4. Decision Support
    • 11.4.1. Predictive Analytics
    • 11.4.2. Prescriptive Analytics
  • 11.5. Video Analytics

12. Agentic AI Market, by End User Industry

  • 12.1. Introduction
  • 12.2. Banking, Financial Services, and Insurance
    • 12.2.1. Banking
    • 12.2.2. Capital Markets
    • 12.2.3. Insurance
  • 12.3. Healthcare
  • 12.4. Retail

13. Agentic AI Market, by Enterprise Size

  • 13.1. Introduction
  • 13.2. Large Enterprises
  • 13.3. Small & Medium Enterprises

14. Americas Agentic AI Market

  • 14.1. Introduction
  • 14.2. United States
  • 14.3. Canada
  • 14.4. Mexico
  • 14.5. Brazil
  • 14.6. Argentina

15. Europe, Middle East & Africa Agentic AI Market

  • 15.1. Introduction
  • 15.2. United Kingdom
  • 15.3. Germany
  • 15.4. France
  • 15.5. Russia
  • 15.6. Italy
  • 15.7. Spain
  • 15.8. United Arab Emirates
  • 15.9. Saudi Arabia
  • 15.10. South Africa
  • 15.11. Denmark
  • 15.12. Netherlands
  • 15.13. Qatar
  • 15.14. Finland
  • 15.15. Sweden
  • 15.16. Nigeria
  • 15.17. Egypt
  • 15.18. Turkey
  • 15.19. Israel
  • 15.20. Norway
  • 15.21. Poland
  • 15.22. Switzerland

16. Asia-Pacific Agentic AI Market

  • 16.1. Introduction
  • 16.2. China
  • 16.3. India
  • 16.4. Japan
  • 16.5. Australia
  • 16.6. South Korea
  • 16.7. Indonesia
  • 16.8. Thailand
  • 16.9. Philippines
  • 16.10. Malaysia
  • 16.11. Singapore
  • 16.12. Vietnam
  • 16.13. Taiwan

17. Competitive Landscape

  • 17.1. Market Share Analysis, 2024
  • 17.2. FPNV Positioning Matrix, 2024
  • 17.3. Competitive Analysis
    • 17.3.1. Accenture PLC
    • 17.3.2. Adept AI Labs Inc.
    • 17.3.3. Agentico Ltd.
    • 17.3.4. Amazon Web Services, Inc.
    • 17.3.5. C3.ai, Inc.
    • 17.3.6. Clarion Analytics
    • 17.3.7. Clarion Technologies
    • 17.3.8. Cognizant Technology Solutions Corporation
    • 17.3.9. Coupa Software Incorporated
    • 17.3.10. Endava plc
    • 17.3.11. Google LLC by Alphabet Inc.
    • 17.3.12. International Business Machines Corporation
    • 17.3.13. Microsoft Corporation
    • 17.3.14. NVIDIA Corporation
    • 17.3.15. Oracle Corporation
    • 17.3.16. Put It Forward Inc.
    • 17.3.17. qBotica Inc.
    • 17.3.18. Salesforce, Inc.
    • 17.3.19. Siemens AG
    • 17.3.20. UiPath, Inc.
    • 17.3.21. Zycus Inc.
    • 17.3.22. ServiceNow, Inc.

18. ResearchAI

19. ResearchStatistics

20. ResearchContacts

21. ResearchArticles

22. Appendix

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제