½ÃÀ庸°í¼­
»óǰÄÚµå
1804702

±â¾÷¿ë ¿¡ÀÌÀüƽ AI ½ÃÀå : ±¸¼º¿ä¼Ò, À¯Çü, Àü°³ ¹æ½Ä, ±â¾÷ ±Ô¸ð, ¿ëµµ, »ê¾÷ ºÐ¾ßº° - ¼¼°è ¿¹Ãø(2025-2030³â)

Enterprise Agentic AI Market by Component, Type, Deployment Mode, Enterprise Size, Application, Industry Vertical - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 193 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

±â¾÷¿ë ¿¡ÀÌÀüƽ AI ½ÃÀåÀº 2024³â¿¡´Â 20¾ï 4,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾úÀ¸¸ç, 2025³â¿¡´Â CAGR 27.17%·Î 25¾ï 7,000¸¸ ´Þ·¯·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 86¾ï 3,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ ¿¬µµ 2024³â 20¾ï 4,000¸¸ ´Þ·¯
ÃßÁ¤ ¿¬µµ 2025³â 25¾ï 7,000¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ 2030³â 86¾ï 3,000¸¸ ´Þ·¯
CAGR(%) 27.17%

ÀÚÀ²Àû, È®À强, ÀûÀÀÇü ½Ã½ºÅÛÀ» ÅëÇØ ±â¾÷¿ë ¿¡ÀÌÀüƽ AI°¡ ÀÇ»ç°áÁ¤ ÀÎÅÚ¸®Àü½º¿Í ¾÷¹« È¿À²¼ºÀ» ¾î¶»°Ô Çõ½ÅÇϰí ÀÖ´ÂÁö ¾Ë¾Æº¸¼¼¿ä.

±â¾÷µéÀº Â÷¼¼´ë ÀÇ»ç°áÁ¤ ÀÎÅÚ¸®Àü½º¿Í ¾÷¹« ¹Îø¼ºÀ» ½ÇÇöÇÏ´Â Ã˸ÅÁ¦·Î¼­ ¿¡ÀÌÀüƽ AI¿¡ Á¡Á¡ ´õ ¸¹Àº °ü½ÉÀ» ±â¿ïÀ̰í ÀÖ½À´Ï´Ù. ±âÁ¸ µ¥ÀÌÅÍ ¾ÆÅ°ÅØÃ³¿¡ ÀÚÀ² Ãß·Ð ¿£ÁøÀ» ÅëÇÕÇÔÀ¸·Î½á ±â¾÷Àº Áß¿äÇÑ ¿öÅ©Ç÷ο츦 °¡¼ÓÈ­Çϰí, Àΰ£ÀÇ Æí°ßÀ» ÁÙÀ̰í, ½Ã°£ÀÌ Áö³²¿¡ µû¶ó ÇнÀÇϰí ÁøÈ­ÇÏ´Â ÀûÀÀÇü ÇÁ·Î¼¼½º¸¦ ±¸ÃàÇÒ ¼ö ÀÖ½À´Ï´Ù. ÁÖ¿ä µµÀÔ ±â¾÷µéÀº »ê¾÷À» ºÒ¹®Çϰí ÀλçÀÌÆ® È®º¸ ½Ã°£, ºÎ¼­ °£ Çù¾÷ °¡¼ÓÈ­, ¼öÀÛ¾÷ °³ÀÔÀÇ ´ëÆø °¨¼Ò µî ÃøÁ¤ °¡´ÉÇÑ °³¼± È¿°ú¸¦ °æÇèÇϰí ÀÖ½À´Ï´Ù.

¿¡ÀÌÀüÆ® ±â´É, À±¸®Àû °Å¹ö³Í½º, ºÎ¼­ °£ Çù¾÷ÀÇ ÅëÇÕÀ» ÅëÇØ ±â¾÷ AIÀÇ Á¤¼¼¸¦ Çü¼ºÇÏ´Â Áß¿äÇÑ º¯È­¸¦ ¹àÈü´Ï´Ù.

±â¾÷ÀÌ ¿¡ÀÌÀüÆ® ±â´ÉÀ» À±¸®Àû °Å¹ö³Í½º ÇÁ·¹ÀÓ¿öÅ© ¹× ºÎ¼­ °£ Çù¾÷ ü°è¿Í ÅëÇÕÇÔ¿¡ µû¶ó ¿£ÅÍÇÁ¶óÀÌÁî AIÀÇ »óȲÀº º¯È­ÀÇ ½Ã±â¸¦ ¸ÂÀÌÇϰí ÀÖ½À´Ï´Ù. AI ¼³°èÀÚµéÀº ÁøÈ­ÇÏ´Â ±ÔÁ¦¸¦ ÁؼöÇϱâ À§ÇØ µ¥ÀÌÅÍ ¼öÁýÀÇ °¢ ´Ü°è¸¶´Ù ÆíÇ⼺ ¿ÏÈ­ ¸ðµâÀ» ÅëÇÕÇÏ´Â °æ¿ì°¡ ´Ã°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¿¬ÇÕÇнÀ ¸ðµ¨À» ÅëÇØ Áö¸®Àû °æ°è¸¦ ³Ñ¾î ¾ÈÀüÇÑ Áö½Ä °øÀ¯°¡ °¡´ÉÇØÁ® µ¥ÀÌÅÍ ÁÖ±ÇÀ» À¯ÁöÇÑ ºÐ»êÇü ÀÎÅÚ¸®Àü½ºÀÇ »õ·Î¿î ½Ã´ë°¡ ¿­¸®°í ÀÖ½À´Ï´Ù.

2025³â ¼¼°è °ø±Þ¸Á Çõ½Å, ºñ¿ë ±¸Á¶, Àü·«Àû Á¶´Þ Àü·«¿¡ ´ëÇÑ ¹Ì±¹ °ü¼¼°¡ ¼¼°è °ø±Þ¸Á Çõ½Å, ºñ¿ë ±¸Á¶, Àü·«Àû Á¶´Þ Àü·«¿¡ ¹ÌÄ¡´Â ±¤¹üÀ§ÇÑ ´©Àû ¿µÇ⠺м®

2025³â ½ÃÇàµÈ ¹Ì±¹ÀÇ °ü¼¼ Á¶Á¤Àº ¼¼°è °ø±Þ¸Á Àüü¿¡ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖÀ¸¸ç, ±â¾÷µéÀÌ Á¶´Þ Àü·«°ú Á¦Á¶ ¹ßÀÚ±¹À» ÀçÆò°¡Çϵµ·Ï Ã˱¸Çϰí ÀÖ½À´Ï´Ù. ÁÖ¿ä ºÎǰÀÇ °ü¼¼ ÀλóÀ¸·Î ÀÎÇØ Á¶´ÞÆÀÀº °ø±Þ¾÷ü ³×Æ®¿öÅ©ÀÇ ´Ù¾çÈ­¿Í ´Ï¾î¼î¾î¸µ ¿É¼ÇÀ» ¸ð»öÇÏ´Â ÇÑÆí, À繫 ºÎ¼­´Â ºñ¿ë °ü¸® ÇÁ·ÎÅäÄÝÀ» ÀçÁ¶Á¤ÇØ¾ß ÇÏ´Â »óȲ¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù.

±¸¼º¿ä¼Ò, µµÀÔ ÇüÅÂ, Á¶Á÷ ±Ô¸ð, ¿ëµµ, »ê¾÷º°·Î ¿£ÅÍÇÁ¶óÀÌÁî AI µµÀÔÀ» ÃËÁøÇÏ´Â ÁÖ¿ä ¼¼ºÐÈ­ ÀλçÀÌÆ®¸¦ Àо¼¼¿ä.

ÄÄÆ÷³ÍÆ® ¼¼ºÐÈ­ÀÇ ´µ¾Ó½º¸¦ ÀÌÇØÇÏ¸é ±â¾÷ÀÌ ¼­ºñ½º ¹× ¼Ö·ç¼Ç Æ÷Æ®Æú¸®¿À¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ´Ù´Â °ÍÀ» ¾Ë ¼ö ÀÖ½À´Ï´Ù. À¯Áöº¸¼ö ¹× Áö¿ø ±â´ÉÀ» Æ÷ÇÔÇÏ´Â ¸Å´ÏÁöµå ¼­ºñ½º´Â ½Å·ÚÇÒ ¼ö ÀÖ´Â AI ¿î¿µÀÇ ±â¹ÝÀ» Çü¼ºÇϸç, ÄÁ¼³ÆÃ, ±¸Çö, ÅëÇÕÀ» Æ÷°ýÇÏ´Â Àü¹® ¼­ºñ½º´Â ƯÁ¤ »ç¿ë »ç·Ê¿¡ ¸Â°Ô ¹èÆ÷ÇÏ¿© °¡Ä¡ ½ÇÇö ½Ã°£À» °¡¼ÓÈ­ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ÀÌÁßÀÇ ÃÊÁ¡À» ÅëÇØ ±â¾÷Àº ¾ÈÁ¤ÀûÀÎ ½Ã½ºÅÛ °¡µ¿ ½Ã°£À» º¸ÀåÇÒ »Ó¸¸ ¾Æ´Ï¶ó, ¿¡ÀÌÀüƽ AI¸¦ ·¹°Å½Ã ÀÎÇÁ¶ó¿¡ ÅëÇÕÇϱâ À§ÇÑ Àü¹®°¡ÀÇ °¡À̵带 Ȱ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

¾Æ¸Þ¸®Ä«, EMEA, ¾Æ½Ã¾ÆÅÂÆò¾ç ½ÃÀå¿¡¼­ÀÇ ±â¾÷¿ë ¿¡ÀÌÀüƽ AI µµÀÔ ¹× ¼ºÀå ÆÐÅÏ¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â ´Ù¾çÇÑ Áö¿ªÀû ¿ªÇп¡ ´ëÇÑ °ËÁõ

Áö¿ªÀû ¿ªÇаü°è´Â ¿¡ÀÌÀüƽ AIÀÇ µµÀÔ ÆÐÅϰú ¼ºÀå ±Ëµµ¿¡ Å« ¿µÇâÀ» ¹ÌĨ´Ï´Ù. ¾Æ¸Þ¸®Ä«¿¡¼­ ±â¾÷µéÀº ¼º¼÷ÇÑ Å¬¶ó¿ìµå ±â¹Ý, ±¤¹üÀ§ÇÑ AI ÀÎÀç Ç®, µ¥ÀÌÅÍ ±â¹Ý Çõ½ÅÀ» Àå·ÁÇÏ´Â ±ÔÁ¦ ȯ°æÀÇ ÇýÅÃÀ» ´©¸®°í ÀÖÀ¸¸ç, ÀÌ´Â ºü¸¥ ½ÇÇè°ú ºü¸¥ ´ë±Ô¸ð ¹èÆ÷·Î À̾îÁö°í ÀÖ½À´Ï´Ù. ¹Ý¸é, À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«¿¡¼­´Â ±ÔÁ¦ Á¢±Ù ¹æ½Ä°ú µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã Ç¥ÁØÀÌ ¸ðÀÚÀÌũó·³ ¾ôÇô ÀÖ¾î ±¹°æ °£ µ¥ÀÌÅÍ °Å¹ö³Í½º¸¦ Ž»öÇϱâ À§ÇÑ °í±Þ ÄÄÇöóÀÌ¾ð½º ÅøÅ¶°ú ¿¬°èµÈ ÇнÀ »ýŰ踦 °³¹ßÇÏ´Â µ¥ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù.

½ÃÀåÀ» ¼±µµÇÏ´Â ±â¾÷¿ë ¿¡ÀÌÀüƽ AI Á¦°ø¾÷ü¿Í Àü·«Àû Çõ½Å°¡µéÀÇ ÁÖ¿ä °æÀï Àü·«°ú ¼ºÀå ±ËÀûÀ» Á¶¸íÇÕ´Ï´Ù.

ÁÖ¿ä ±â¼ú ±â¾÷°ú Àü¹® Çõ½Å°¡µéÀº ±â¾÷¿ë ¿¡ÀÌÀüƽ AI ½ÃÀåÀ» Á¤ÀÇÇϱâ À§ÇØ Ä¡¿­ÇÑ °æÀïÀ» ¹úÀ̰í ÀÖ½À´Ï´Ù. ÀϺΠ±â¾÷Àº ÀÚ¿¬¾î ÀÌÇØ, Áö½Ä ±×·¡ÇÁ, ÀÚµ¿ ÀÇ»ç°áÁ¤ ¿£Áø ¸ðµâÀ» ÅëÇÕÇÑ ¿£µå-Åõ-¿£µå Ç÷§Æû Á¦°ø¿¡ ÁýÁßÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, AI °Å¹ö³Í½º ½ºÀ§Æ®¸¦ ÅëÇØ °¨»ç ÃßÀû, °øÁ¤¼º °Ë»ç, »çÀ̹ö º¸¾È ¾ÈÀüÀåÄ¡¸¦ ¸ðµ¨ ¹èÆ÷ ÆÄÀÌÇÁ¶óÀο¡ Á÷Á¢ ÅëÇÕÇÏ¿© Â÷º°È­¸¦ ²ÒÇÏ´Â ±â¾÷µµ ÀÖ½À´Ï´Ù.

¿¡ÀÌÀüƽ AI µµÀÔ, À±¸®Àû °Å¹ö³Í½º, È®Àå °¡´ÉÇÑ Çõ½Å ÆÄÀÌÇÁ¶óÀÎÀ» ¼º°øÀûÀ¸·Î ±¸ÃàÇϱâ À§ÇÑ ¾÷°è ¸®´õµéÀ» À§ÇÑ ½ÇÇà °¡´ÉÇÑ Á¦¾È

¿¡ÀÌÀüƽ AIÀÇ »õ·Î¿î ½Ã´ë¿¡ ¼º°øÇϱâ À§ÇØ ¾÷°è ¸®´õµéÀº ¿µÇâ·Â ÀÖ´Â ÆÄÀÏ·µ ÇÁ·Î±×·¥ºÎÅÍ ½ÃÀÛÇÏ´Â ´Ü°èº° µµÀÔ ·Îµå¸ÊÀ» äÅÃÇØ¾ß ÇÕ´Ï´Ù. ¸ÕÀú, ¾÷¹« È¿À²À» ±Ø´ëÈ­Çϰųª ¸®½ºÅ©¸¦ ÁÙÀÏ ¼ö ÀÖ´Â ¹Ì¼Ç Å©¸®Æ¼ÄÃÇÑ ÇÁ·Î¼¼½º¸¦ ½Äº°Çϰí, ºñÁî´Ï½º ¸ñÇ¥¿ÍÀÇ Àϰü¼ºÀ» º¸ÀåÇϱâ À§ÇØ ºÎ¼­ °£ ÆÀ°ú ÇÔ²² ¼Ö·ç¼ÇÀ» °øµ¿ °³¹ßÇÕ´Ï´Ù. ±× ÈÄ, Á¶Á÷Àº ¸ðµ¨ÀÇ ¶óÀÌÇÁ»çÀÌŬ °ü¸®¸¦ °¨µ¶Çϰí Åõ¸í¼º ±âÁØÀ» À¯ÁöÇϱâ À§ÇØ ¹ý·ü, ±ÔÁ¤ Áؼö ¹× À±¸® ´ã´çÀÚ¸¦ Æ÷ÇÔÇÑ AI °Å¹ö³Í½º ÇùÀÇȸ¸¦ °ø½ÄÈ­ÇØ¾ß ÇÕ´Ï´Ù.

µ¥ÀÌÅÍ ¼öÁý, 1Â÷ ÀÎÅͺä, 2Â÷ ºÐ¼®, Æí°ß ¾ø´Â ÀλçÀÌÆ®¸¦ º¸ÀåÇÏ´Â »ï°¢Ãø·® ±â¹ýÀ» ¼³¸íÇÏ´Â Á¾ÇÕÀûÀÎ Á¶»ç ±â¹ý

º» Á¶»ç ¹æ¹ýÀº ¾ö°ÝÇÑ 2Â÷ ºÐ¼®°ú 1Â÷ µ¥ÀÌÅÍ ¼öÁýÀ» °áÇÕÇÑ ÇÏÀ̺긮µå ¹æ½ÄÀ» Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. ¸ÕÀú, ¾÷°è °£Ç๰, ±ÔÁ¦ ´ç±¹ Á¦Ãâ ¼­·ù, ¹é¼­¸¦ ÅëÇØ ¿¡ÀÌÀüƽ AI ±â¼ú°ú Áö¿ª Á¤Ã¥ µ¿Çâ¿¡ ´ëÇÑ ±âÃÊÀûÀÎ ÀÌÇØ¸¦ ¾ò¾ú½À´Ï´Ù. ÀÌÈÄ ¿©·¯ Áö¿ªÀÇ C·¹º§ ÀÓ¿ø, ±â¼ú ¼³°èÀÚ, Á¶´Þ Àü¹®°¡, ±ÔÁ¦ ÀÚ¹®À§¿øÀ» ´ë»óÀ¸·Î ±¸Á¶È­µÈ ÀÎÅͺ並 ½Ç½ÃÇÏ¿© ´Ù¾çÇÑ °üÁ¡À» Æ÷ÂøÇÏ°í »õ·Î¿î ÁÖÁ¦¸¦ °ËÁõÇß½À´Ï´Ù.

±â¾÷ÀÇ ¹Îø¼º, ÀÇ»ç°áÁ¤ ¿ì¼ö¼º, Áö¼Ó°¡´ÉÇÑ °æÀï ¿ìÀ§¿¡ ´ëÇÑ ¿¡ÀÌÀüƽ AIÀÇ º¯ÇõÀû ¿µÇâ¿¡ ´ëÇÑ °á·ÐÀû °üÁ¡

°á·ÐÀûÀ¸·Î, ¿£ÅÍÇÁ¶óÀÌÁî ¿¡ÀÌÀüƽ AI°¡ µðÁöÅÐ ÀüȯÀÇ ¿©Á¤¿¡¼­ ¸Å¿ì Áß¿äÇÑ º¯°îÁ¡À» º¸¿©ÁÖ°í ÀÖÀ½Àº ºÐ¸íÇÕ´Ï´Ù. ÀÚÀ²Àû ÀÇ»ç°áÁ¤ ¿£Áø°ú °ß°íÇÑ °Å¹ö³Í½º ÇÁ·¹ÀÓ¿öÅ©¸¦ °áÇÕÇÔÀ¸·Î½á Á¶Á÷Àº Ź¿ùÇÑ ¿î¿µ ź·Â¼ºÀ» ´Þ¼ºÇϰí, Áö¼Ó°¡´ÉÇÑ ¼ºÀåÀ» ÃËÁøÇϸç, µ¥ÀÌÅÍ Á᫐ ¹®È­¸¦ Á¶¼ºÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, °ü¼¼ µ¿Çâ°ú Áö¿ªÀû ´µ¾Ó½º¿¡ ´ëÇÑ Àü·«Àû ´ëÀÀÀº ¹ÎøÇϰí ÀÎÅÚ¸®Àü½º Áß½ÉÀÇ ÀÇ»ç°áÁ¤ °úÁ¤ÀÇ Á߿伺À» °­Á¶Çϰí ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ¿ªÇÐ

Á¦6Àå ½ÃÀå ÀλçÀÌÆ®

  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®

Á¦7Àå ¹Ì±¹ °ü¼¼ÀÇ ´©Àû ¿µÇâ 2025

Á¦8Àå ±â¾÷¿ë ¿¡ÀÌÀüƽ AI ½ÃÀå : ±¸¼º¿ä¼Òº°

  • ¼­ºñ½º
    • ¸Å´ÏÁöµå ¼­ºñ½º
      • À¯Áöº¸¼ö
      • ¼­Æ÷Æ®
    • Àü¹® ¼­ºñ½º
      • ÄÁ¼³ÆÃ
      • ±¸Çö
      • ÅëÇÕ
  • ¼Ö·ç¼Ç

Á¦9Àå ±â¾÷¿ë ¿¡ÀÌÀüƽ AI ½ÃÀå : À¯Çüº°

  • ÀÚü ±¸Ãà ¿¡ÀÌÀüÆ®
  • Áï½Ã ¹èÆ÷ °¡´É ¿¡ÀÌÀüÆ®

Á¦10Àå ±â¾÷¿ë ¿¡ÀÌÀüƽ AI ½ÃÀå : Àü°³ ¹æ½Äº°

  • Ŭ¶ó¿ìµå
  • ÇÏÀ̺긮µå
  • ¿ÂÇÁ·¹¹Ì½º

Á¦11Àå ±â¾÷¿ë ¿¡ÀÌÀüƽ AI ½ÃÀå : ±â¾÷ ±Ô¸ðº°

  • ´ë±â¾÷
  • Áß¼Ò±â¾÷

Á¦12Àå ±â¾÷¿ë ¿¡ÀÌÀüƽ AI ½ÃÀå : ¿ëµµº°

  • °í°´ ¼­ºñ½º
  • Àλç
  • ¸¶ÄÉÆÃ°ú ¼¼ÀÏÁî
  • ¿ÀÆÛ·¹À̼Ç

Á¦13Àå ±â¾÷¿ë ¿¡ÀÌÀüƽ AI ½ÃÀå : ¾÷°èº°

  • BFSI
  • ÇコÄɾî
  • IT¡¤Åë½Å
  • Á¦Á¶¾÷
  • ¼Ò¸Å

Á¦14Àå ¾Æ¸Þ¸®Ä«ÀÇ ±â¾÷¿ë ¿¡ÀÌÀüƽ AI ½ÃÀå

  • ¹Ì±¹
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ºê¶óÁú
  • ¾Æ¸£ÇîÆ¼³ª

Á¦15Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ±â¾÷¿ë ¿¡ÀÌÀüƽ AI ½ÃÀå

  • ¿µ±¹
  • µ¶ÀÏ
  • ÇÁ¶û½º
  • ·¯½Ã¾Æ
  • ÀÌÅ»¸®¾Æ
  • ½ºÆäÀÎ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
  • µ§¸¶Å©
  • ³×´ú¶õµå
  • īŸ¸£
  • Çɶõµå
  • ½º¿þµ§
  • ³ªÀÌÁö¸®¾Æ
  • ÀÌÁýÆ®
  • Æ¢¸£Å°¿¹
  • À̽º¶ó¿¤
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • ½ºÀ§½º

Á¦16Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ±â¾÷¿ë ¿¡ÀÌÀüƽ AI ½ÃÀå

  • Áß±¹
  • Àεµ
  • ÀϺ»
  • È£ÁÖ
  • Çѱ¹
  • Àεµ³×½Ã¾Æ
  • ű¹
  • Çʸ®ÇÉ
  • ¸»·¹À̽þÆ
  • ½Ì°¡Æ÷¸£
  • º£Æ®³²
  • ´ë¸¸

Á¦17Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®, 2024
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2024
  • °æÀï ºÐ¼®
    • Google LLC by Alphabet Inc.
    • International Business Machines Corporation
    • Accenture plc
    • Accusoft Corporation
    • Amazon.com, Inc.
    • Anthropic PBC
    • Ascendion Inc.
    • Atera Networks Ltd.
    • Creole Studios LLP
    • Haptik Infotech Pvt. Ltd.
    • Kyndryl Holdings, Inc.
    • Meta Platforms, Inc.
    • Microsoft Corporation
    • NVIDIA Corporation
    • OpenAI, L.L.C.
    • Oracle Corporation
    • Pegasystems, Inc.
    • Relevance AI Pty Ltd
    • Salesforce, Inc.
    • SAP SE
    • ServiceNow, Inc.
    • SoundHound AI, Inc.
    • Tonkean, Inc.
    • UiPath, Inc.
    • Viz.ai, Inc.

Á¦18Àå ¸®¼­Ä¡ AI

Á¦19Àå ¸®¼­Ä¡ Åë°è

Á¦20Àå ¸®¼­Ä¡ ÄÁÅÃÆ®

Á¦21Àå ¸®¼­Ä¡ ±â»ç

Á¦22Àå ºÎ·Ï

KSM 25.09.11

The Enterprise Agentic AI Market was valued at USD 2.04 billion in 2024 and is projected to grow to USD 2.57 billion in 2025, with a CAGR of 27.17%, reaching USD 8.63 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 2.04 billion
Estimated Year [2025] USD 2.57 billion
Forecast Year [2030] USD 8.63 billion
CAGR (%) 27.17%

Discover How Enterprise Agentic AI Is Transforming Decision Intelligence and Operational Efficiency Through Autonomous, Scalable, and Adaptive Systems

Enterprises are increasingly turning to agentic AI as a catalyst for next-generation decision intelligence and operational agility. By embedding autonomous reasoning engines within existing data architectures, organizations can accelerate critical workflows, reduce human bias, and create adaptive processes that learn and evolve over time. Across industries, leading adopters have witnessed measurable improvements in time-to-insight, faster cross-functional collaboration, and a significant reduction in manual intervention.

In this context, agentic AI extends beyond traditional automation by orchestrating multi-step actions with minimal human oversight. It synthesizes real-time data streams from disparate sources, draws on contextual memory, and continuously refines its own algorithms. Consequently, enterprises are empowered to anticipate market shifts, resolve complex supply chain bottlenecks, and optimize customer engagement at scale. As we introduce this executive summary, we will explore the strategic underpinnings, emerging trends, and practical considerations that underpin successful enterprise deployments.

Unveiling the Critical Shifts Reshaping the Enterprise AI Landscape Through Integration of Agentic Capabilities, Ethical Governance, and Cross-Functional Collaboration

The enterprise AI landscape is undergoing transformative shifts as organizations integrate agentic capabilities with ethical governance frameworks and cross-departmental collaboration mechanisms. Increasingly, AI architects are embedding bias-mitigation modules at every stage of data ingestion to ensure compliance with evolving regulations. Furthermore, federated learning models now enable secure knowledge sharing across geographic boundaries, fostering a new era of distributed intelligence that preserves data sovereignty.

In addition, the rise of low-code orchestration platforms has democratized access to advanced AI services, allowing business analysts to design and deploy intelligent workflows. At the same time, the emergence of AI explainability tools ensures transparency in decision rationale, which builds trust among stakeholders. Taken together, these shifts are redefining the role of centralized data science teams, turning them into strategic enablers that guide ethical, scalable innovation across the enterprise.

Analyzing the Far-Reaching Cumulative Impact of United States Tariffs on Global Supply Chains Innovation, Cost Structures, and Strategic Sourcing Strategies in 2025

United States tariff adjustments enacted in 2025 have created reverberations across global supply chains, prompting enterprises to reevaluate sourcing strategies and manufacturing footprints. Tariff escalations on critical components have driven procurement teams to diversify supplier networks and explore nearshoring alternatives, while also pressing finance departments to recalibrate cost-management protocols.

Moreover, strategic sourcing teams are leveraging agentic AI simulation engines to model tariff scenarios, dynamically adjusting material flows to mitigate disruption. Consequently, operations leaders are able to forecast cost impacts with unprecedented granularity, compare cross-border routing options, and implement contingency plans in real time. Looking ahead, this tariff-driven volatility underscores the imperative for agile decision frameworks that combine economic intelligence, regulatory risk assessment, and continuous scenario planning.

Decoding Key Segmentation Insights Driving Enterprise AI Adoption Across Components, Deployment Modes, Organization Sizes, Applications, and Industry Verticals

A nuanced understanding of component segmentation reveals that enterprises are investing heavily in both services and solution portfolios. Managed services, encompassing maintenance and support functions, form the foundation for reliable AI operations, while professional services-spanning consulting, implementation, and integration-accelerate time-to-value by tailoring deployments to specific use cases. This dual focus ensures that organizations not only secure stable system uptime but also harness expert guidance to integrate agentic AI into legacy infrastructures.

Turning to deployment mode, enterprises are striking a balance between fully cloud-native architectures, on-premise installations for sensitive workloads, and hybrid environments that leverage the best of both worlds. This flexibility empowers organizations to optimize performance, adhere to data residency requirements, and scale resource consumption in response to fluctuating demand. Likewise, enterprise size influences adoption pathways: large global corporations prioritize comprehensive, enterprise-wide platforms, whereas small and medium enterprises favor modular, pay-as-you-grow solutions that align with leaner budgets.

Application-centric insights show that customer service teams are deploying virtual agents for 24/7 support, marketing and sales units are leveraging predictive lead scoring, HR functions are automating talent screening, and operations groups are using real-time monitoring to preempt equipment failures. Industry verticals such as banking, healthcare, telecom, manufacturing, and retail each bring distinct regulatory and performance imperatives, driving the creation of tailored AI modules that address sector-specific risk profiles and process requirements.

Examining Diverse Regional Dynamics Influencing Enterprise Agentic AI Adoption and Growth Patterns Across the Americas, EMEA, and Asia-Pacific Markets

Regional dynamics exert a profound influence on agentic AI adoption patterns and growth trajectories. In the Americas, enterprises benefit from mature cloud infrastructures, widespread AI talent pools, and a regulatory environment that encourages data-driven innovation, leading to rapid experimentation and early large-scale rollouts. By contrast, Europe, the Middle East, and Africa present a mosaic of regulatory approaches and data privacy standards, which has spurred the development of advanced compliance toolkits and federated learning ecosystems to navigate cross-border data governance.

Meanwhile, the Asia-Pacific region is emerging as a hotbed of digital transformation, driven by government-led AI initiatives, competitive manufacturing sectors, and a burgeoning startup ecosystem. Here, organizations are adopting agentic AI to optimize logistics, accelerate industrial automation, and personalize consumer engagement at scale. Taken together, these diverse regional characteristics underscore the need for a localized go-to-market strategy that aligns technological capabilities with regulatory landscapes and cultural considerations.

Highlighting Pivotal Competitive Strategies and Growth Trajectories of Market-Leading Enterprise Agentic AI Providers and Strategic Innovators

Leading technology firms and specialist innovators are competing fiercely to define the enterprise agentic AI market. Some are focusing on end-to-end platform offerings that integrate natural language understanding, knowledge graphs, and automated decision-engine modules. Others differentiate through AI governance suites that embed audit trails, fairness checks, and cybersecurity safeguards directly into the model deployment pipeline.

Collaboration between cloud hyperscalers and boutique AI consultancies is another hallmark of this competitive landscape, enabling joint go-to-market models that package scale-out infrastructure with bespoke implementation expertise. At the same time, emerging startups are carving out niche segments by delivering domain-specific solutions, such as financial risk modeling engines or automated quality assurance bots for manufacturing lines. As a result, buyers face a complex vendor matrix, where decision criteria hinge on integration capabilities, regulatory alignment, and proven outcome track records.

Actionable Recommendations for Industry Leaders to Successfully Navigate Agentic AI Implementation, Ethical Governance, and Scalable Innovation Pipelines

To thrive in the emerging era of agentic AI, industry leaders must adopt a phased implementation roadmap that begins with high-impact pilot programs. Initially, they should identify mission-critical processes that stand to gain the greatest efficiency or risk-mitigation benefits, then co-create solutions with cross-functional teams to ensure alignment with business objectives. Subsequently, organizations should formalize AI governance councils that include legal, compliance, and ethics representatives to oversee model lifecycle management and uphold transparency standards.

Furthermore, investing in talent development is essential; enterprises should establish continuous learning pathways and leverage industry alliances to upskill existing teams. Technology partnerships can accelerate capabilities, but full competitive advantage arises when internal and external expertise converge to build proprietary data assets. Finally, leaders must embed performance metrics and feedback loops into every stage of deployment, ensuring that AI agents adapt to evolving business conditions and stakeholder expectations.

Comprehensive Research Methodology Outlining Data Collection, Primary Interviews, Secondary Analysis, and Triangulation Techniques Ensuring Unbiased Insights

This research leverages a hybrid methodology combining rigorous secondary analysis with primary data collection. Initially, industry publications, regulatory filings, and white papers provided a foundational understanding of agentic AI technologies and regional policy developments. Subsequently, structured interviews were conducted with C-level executives, technology architects, procurement specialists, and regulatory advisors across multiple geographies to capture nuanced perspectives and validate emerging themes.

Data triangulation techniques were applied to reconcile qualitative insights with quantitative trend indicators, ensuring consistency and reducing bias. We also employed use-case scenario mapping and decision-tree frameworks to assess the relative impact of tariffs, deployment modes, and sector-specific requirements. Throughout, a continuous review process involving cross-functional experts guaranteed the report's integrity, depth, and relevance to strategic decision-makers.

Concluding Perspectives on the Transformative Impact of Agentic AI on Enterprise Agility, Decision-Making Excellence, and Sustainable Competitive Advantage

As we conclude, it is clear that enterprise agentic AI represents a pivotal inflection point in digital transformation journeys. By fusing autonomous decision-making engines with robust governance frameworks, organizations can achieve unparalleled operational resilience, drive sustainable growth, and cultivate a data-centric culture. Moreover, the strategic response to tariff dynamics and regional nuances underscores the importance of agile, intelligence-driven decision processes.

Looking forward, the convergence of industry-specific solutions, human-centric design principles, and ethical AI practices will define market leadership. Enterprises that embrace continuous learning, foster collaborative ecosystems, and maintain a relentless focus on transparent outcomes will secure lasting competitive advantage in an increasingly complex technological landscape.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Enterprises deploying autonomous multi-agent AI systems for real-time operational optimization
  • 5.2. Integration of agentic AI platforms with legacy enterprise resource planning systems
  • 5.3. Adoption of self-learning AI agents for proactive cybersecurity threat detection and response
  • 5.4. Use of generative agentic AI for automated content creation and personalized customer engagement
  • 5.5. Implementation of trust and governance frameworks for enterprise-scale agentic AI deployments
  • 5.6. Industry-specific deployment of agentic AI for supply chain resilience and dynamic logistics management
  • 5.7. Leveraging cloud-native agentic AI architectures to accelerate digital transformation initiatives
  • 5.8. Development of explainable AI techniques to improve transparency in autonomous agent decision-making
  • 5.9. Scaling multi-agent orchestration solutions to support complex enterprise workflows across verticals
  • 5.10. Assessment of ROI and performance metrics for enterprise agentic AI implementations and pilots

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Enterprise Agentic AI Market, by Component

  • 8.1. Introduction
  • 8.2. Services
    • 8.2.1. Managed Services
      • 8.2.1.1. Maintenance
      • 8.2.1.2. Support
    • 8.2.2. Professional Services
      • 8.2.2.1. Consulting
      • 8.2.2.2. Implementation
      • 8.2.2.3. Integration
  • 8.3. Solution

9. Enterprise Agentic AI Market, by Type

  • 9.1. Introduction
  • 9.2. Build-Your-Own Agents
  • 9.3. Ready-to-Deploy Agents

10. Enterprise Agentic AI Market, by Deployment Mode

  • 10.1. Introduction
  • 10.2. Cloud
  • 10.3. Hybrid
  • 10.4. On-Premise

11. Enterprise Agentic AI Market, by Enterprise Size

  • 11.1. Introduction
  • 11.2. Large Enterprises
  • 11.3. Small And Medium Enterprises

12. Enterprise Agentic AI Market, by Application

  • 12.1. Introduction
  • 12.2. Customer Service
  • 12.3. Human Resource
  • 12.4. Marketing And Sales
  • 12.5. Operations

13. Enterprise Agentic AI Market, by Industry Vertical

  • 13.1. Introduction
  • 13.2. BFSI
  • 13.3. Healthcare
  • 13.4. IT & Telecom
  • 13.5. Manufacturing
  • 13.6. Retail

14. Americas Enterprise Agentic AI Market

  • 14.1. Introduction
  • 14.2. United States
  • 14.3. Canada
  • 14.4. Mexico
  • 14.5. Brazil
  • 14.6. Argentina

15. Europe, Middle East & Africa Enterprise Agentic AI Market

  • 15.1. Introduction
  • 15.2. United Kingdom
  • 15.3. Germany
  • 15.4. France
  • 15.5. Russia
  • 15.6. Italy
  • 15.7. Spain
  • 15.8. United Arab Emirates
  • 15.9. Saudi Arabia
  • 15.10. South Africa
  • 15.11. Denmark
  • 15.12. Netherlands
  • 15.13. Qatar
  • 15.14. Finland
  • 15.15. Sweden
  • 15.16. Nigeria
  • 15.17. Egypt
  • 15.18. Turkey
  • 15.19. Israel
  • 15.20. Norway
  • 15.21. Poland
  • 15.22. Switzerland

16. Asia-Pacific Enterprise Agentic AI Market

  • 16.1. Introduction
  • 16.2. China
  • 16.3. India
  • 16.4. Japan
  • 16.5. Australia
  • 16.6. South Korea
  • 16.7. Indonesia
  • 16.8. Thailand
  • 16.9. Philippines
  • 16.10. Malaysia
  • 16.11. Singapore
  • 16.12. Vietnam
  • 16.13. Taiwan

17. Competitive Landscape

  • 17.1. Market Share Analysis, 2024
  • 17.2. FPNV Positioning Matrix, 2024
  • 17.3. Competitive Analysis
    • 17.3.1. Google LLC by Alphabet Inc.
    • 17.3.2. International Business Machines Corporation
    • 17.3.3. Accenture plc
    • 17.3.4. Accusoft Corporation
    • 17.3.5. Amazon.com, Inc.
    • 17.3.6. Anthropic PBC
    • 17.3.7. Ascendion Inc.
    • 17.3.8. Atera Networks Ltd.
    • 17.3.9. Creole Studios LLP
    • 17.3.10. Haptik Infotech Pvt. Ltd.
    • 17.3.11. Kyndryl Holdings, Inc.
    • 17.3.12. Meta Platforms, Inc.
    • 17.3.13. Microsoft Corporation
    • 17.3.14. NVIDIA Corporation
    • 17.3.15. OpenAI, L.L.C.
    • 17.3.16. Oracle Corporation
    • 17.3.17. Pegasystems, Inc.
    • 17.3.18. Relevance AI Pty Ltd
    • 17.3.19. Salesforce, Inc.
    • 17.3.20. SAP SE
    • 17.3.21. ServiceNow, Inc.
    • 17.3.22. SoundHound AI, Inc.
    • 17.3.23. Tonkean, Inc.
    • 17.3.24. UiPath, Inc.
    • 17.3.25. Viz.ai, Inc.

18. ResearchAI

19. ResearchStatistics

20. ResearchContacts

21. ResearchArticles

22. Appendix

»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦