시장보고서
상품코드
1806209

증강 분석 시장 : 구성요소, 기술, 전개 방식, 최종사용자, 용도, 최종 용도별 - 세계 예측(2025-2030년)

Augmented Analytics Market by Component, Technology, Deployment Mode, End User, Application, End-use - Global Forecast 2025-2030

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 199 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

증강 분석 시장은 2024년에는 190억 3,000만 달러로 평가되었으며, 2025년에는 242억 7,000만 달러, CAGR 29.29%로 성장하여 2030년에는 889억 3,000만 달러에 달할 것으로 예측됩니다.

주요 시장 통계
기준 연도 2024년 190억 3,000만 달러
추정 연도 2025년 242억 7,000만 달러
예측 연도 2030년 889억 3,000만 달러
CAGR(%) 29.29%

증강 분석의 혁신적 잠재력 발휘, 다양한 조직 기능에서 데이터 기반 의사결정 강화

오늘날의 데이터 중심 세상에서 조직은 구조화되거나 구조화되지 않은 방대한 양의 정보로 넘쳐나고 있습니다. 머신러닝, 자연어 처리, 고급 통계 알고리즘을 융합하여 데이터 준비, 인사이트 생성, 설명을 자동화하는 패러다임의 전환이 바로 증강 분석입니다. 이 혁신적인 접근 방식은 수작업으로 인한 병목현상을 해소하고, 기업이 전문 데이터 팀에만 의존하지 않고도 중요한 패턴을 발견할 수 있도록 돕습니다.

인공지능과 머신러닝이 애널리틱스의 전망을 재정의하고 기업 내 인사이트를 민주화하면서 진화하는 역동성을 탐색합니다.

데이터 양의 비약적인 증가와 데이터 소스의 복잡성으로 인해 분석의 영역은 빠르게 진화하고 있습니다. 수동 쿼리와 정적 대시보드에 의존하던 기존의 비즈니스 인텔리전스 툴은 실시간 확장 가능한 인사이트를 제공하는 데 한계에 도달했습니다. 이에 대응하기 위해 기업들은 의사결정 주기를 단축하고 경쟁적 관련성을 유지하기 위해 증강 분석을 도입하고 있습니다.

2025년 미국 관세 조정이 기술 공급망과 세계 증강 분석 도입에 미치는 광범위한 영향 평가

2025년 초, 미국에서 새로 제정된 수입 기술 부품 및 엔터프라이즈 소프트웨어 서비스에 대한 관세는 세계 공급망과 아웃소싱된 분석 솔루션에 의존하는 기업들에게 새로운 복잡성을 가져왔습니다. 하드웨어 가격이 상승하면서 IT 리더들은 서버, 네트워크 장비, 온프레미스 인프라 도입에 대한 설비 투자 계획을 재검토해야 하는 상황에 처해 있습니다. 이러한 비용 증가는 보다 광범위한 분석 이니셔티브에도 영향을 미치며, 클라우드 전환과 로컬 호스팅의 균형을 신중하게 고려해야 합니다.

각 구성요소, 기술, 사용자 프로필, 용도, 업계에서 전략적 도입을 촉진하는 중요한 세분화를 밝힙니다.

시장을 구성요소별로 분류하면, 핵심 분석 엔진과 임베디드 AI 기능을 제공하는 플랫폼과 지속적인 시스템 관리를 제공하는 매니지드 서비스 및 구현 및 커스터마이징 요구를 충족하는 전문 서비스를 모두 포괄하는 서비스, 두 가지로 나뉩니다. 두 가지에 중점을 두고 있음을 알 수 있었습니다. 기업들은 엔드투엔드 플랫폼 생태계와 전문 서비스 제공업체가 제공하는 맞춤형 전문 지식의 절충안을 고민하고 있습니다.

전 세계 주요 지역에서 증강 분석 솔루션에 대한 수요를 형성하고 있는 지역별 동향과 시장 성숙도 추이를 살펴봅니다.

아메리카는 높은 디지털 성숙도, 탄탄한 기술 인프라, 빠른 혁신을 중시하는 경쟁 환경으로 인해 확장형 분석 도입에 있어 계속해서 선두를 달리고 있습니다. 공공 및 민간 부문 모두 고객 경험 향상, 업무 간소화, 진화하는 데이터 프라이버시 규제 준수를 위해 AI 기반 데이터 플랫폼에 많은 투자를 하고 있습니다. 그 결과 북미 기업들은 셀프서비스 기능과 대화형 분석의 벤치마크를 설정했고, 동종업계는 이를 모방하기 위해 노력하고 있습니다.

2025년 이후 증강 분석 생태계를 형성할 주요 기술 기업의 전략적 이니셔티브와 혁신의 궤적을 살펴봅니다.

주요 기술 기업들은 경쟁 우위를 확보하기 위해 전략적 파트너십을 체결하고, 타겟팅된 인수를 실행하며, AI 지원 분석 제품군을 확장하고 있습니다. 마이크로소프트는 자동 머신러닝과 자연어 쿼리 기능을 자사 클라우드 플랫폼에 통합하고, IBM은 왓슨 AI 기능을 하이브리드 데이터 환경에 통합해 복잡한 기업 사용 사례를 지원하고 있습니다. SAS는 깊은 통계적 유산을 활용하여 고급 모델 해석 가능성 도구로 자동 분석 파이프라인을 지속적으로 강화해 나가고 있습니다.

증강 분석의 발전을 활용하여 데이터 기반 혁신에 대한 조직의 장벽을 극복할 수 있는 구체적이고 실행 가능한 전략을 제공합니다.

증강 분석의 잠재력을 충분히 활용하기 위해서는 먼저 조직의 리더가 데이터 리터러시 문화를 조성하고, 기술 배경이 없는 이해관계자를 위해 AI 기반 인사이트를 파악할 수 있는 교육 프로그램에 투자해야 합니다. 마찬가지로 중요한 것은 분석의 라이프사이클 전반에 걸쳐 데이터의 품질, 프라이버시, 윤리적 사용을 보호하는 강력한 데이터 거버넌스 프레임워크를 도입하는 것입니다.

강력한 증강 분석 시장 분석을 위해 정성적 인사이트와 정량적 검증을 결합한 엄격한 혼합 방법론 연구 접근 방식 상세

이 보고서는 정성적 인사이트와 정량적 검증을 결합한 혼합 접근법을 기반으로 하고 있습니다. 1차 조사에서는 고위 분석 전문가, IT 의사결정권자, 업계 전문가를 대상으로 심층 인터뷰를 진행했습니다. 이러한 대화를 통해 채택 촉진요인, 기술 선호도, 전략적 필수 요소에 대한 직접적인 견해를 얻을 수 있었습니다.

증강 분석의 모멘텀과 데이터 활용에 있어 미래 조직의 우수성 확보를 위한 전략적 필수 요소에 대한 주요 조사 결과 정리

증강 분석의 채택이 가속화되고 있는 것은 데이터 기반 의사결정의 진화에 있어 결정적인 순간입니다. AI를 활용한 자동화를 실현하는 조직은 인사이트 도출 시간을 단축하고, 업무 효율성을 높이며, 새로운 수익원을 창출할 수 있습니다. 머신러닝과 자연어 처리 기능이 더욱 친숙해짐에 따라 데이터 전문가와 비즈니스 사용자 사이의 간극은 점점 더 좁혀질 것으로 보입니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 역학

제6장 시장 인사이트

  • Porter's Five Forces 분석
  • PESTEL 분석

제7장 미국 관세의 누적 영향 2025

제8장 증강 분석 시장 : 구성요소별

  • 플랫폼
  • 서비스
    • 매니지드 서비스
    • 전문 서비스

제9장 증강 분석 시장 : 기술별

  • 인공지능(AI)
  • 비즈니스 인텔리전스(BI) 통합 툴
  • 데이터 검출 및 가시화 툴

제10장 증강 분석 시장 : 전개 방식별

  • 클라우드
  • 온프레미스

제11장 증강 분석 시장 : 최종사용자별

  • 대기업
  • 중소기업

제12장 증강 분석 시장 : 용도별

  • 부정행위 검출
  • 오퍼레이션 관리
  • 제품 개발과 혁신
  • 리스크와 컴플라이언스 관리
  • 세일즈 및 마케팅 최적화
  • 공급망 분석
  • 인재 분석

제13장 증강 분석 시장 : 최종 용도별

  • 은행, 금융 서비스, 보험(BFSI)
  • 교육
  • 에너지·유틸리티
  • 정부 및 공공 부문
  • 헬스케어와 생명과학
  • 제조업
  • 미디어 및 엔터테인먼트
  • 석유 및 가스
  • 소매·소비재
  • 통신 및 정보기술(IT)
  • 운송·물류

제14장 아메리카의 증강 분석 시장

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 아르헨티나

제15장 유럽, 중동 및 아프리카의 증강 분석 시장

  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 아랍에미리트
  • 사우디아라비아
  • 남아프리카공화국
  • 덴마크
  • 네덜란드
  • 카타르
  • 핀란드
  • 스웨덴
  • 나이지리아
  • 이집트
  • 튀르키예
  • 이스라엘
  • 노르웨이
  • 폴란드
  • 스위스

제16장 아시아태평양의 증강 분석 시장

  • 중국
  • 인도
  • 일본
  • 호주
  • 한국
  • 인도네시아
  • 태국
  • 필리핀
  • 말레이시아
  • 싱가포르
  • 베트남
  • 대만

제17장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Actian Corporation
    • Aible, Inc.
    • Altair Engineering Inc.
    • Alteryx, Inc.
    • AtScale, Inc.
    • Databricks, Inc.
    • DataRobot, Inc.
    • Domo, Inc.
    • DotData, Inc.
    • GoodData Corporation
    • Infor Equity Holdings, LLC
    • International Business Machines Corporation
    • KNIME AG
    • Microsoft Corporation
    • MicroStrategy Incorporated
    • Oracle Corporation
    • QlikTech International AB
    • Salesforce, Inc.
    • SAP SE
    • SAS Institute Inc.
    • Sisense, Inc.
    • Tellius, Inc.
    • ThoughtSpot, Inc.
    • Yellowfin BI
    • Zoho Corporation

제18장 리서치 AI

제19장 리서치 통계

제20장 리서치 컨택트

제21장 리서치 기사

제22장 부록

KSM 25.09.12

The Augmented Analytics Market was valued at USD 19.03 billion in 2024 and is projected to grow to USD 24.27 billion in 2025, with a CAGR of 29.29%, reaching USD 88.93 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 19.03 billion
Estimated Year [2025] USD 24.27 billion
Forecast Year [2030] USD 88.93 billion
CAGR (%) 29.29%

Unleashing the transformative potential of augmented analytics to empower data-driven decision making across diverse organizational functions

In today's data-driven world, organizations are inundated with vast quantities of structured and unstructured information. Augmented analytics represents a paradigm shift, blending machine learning, natural language processing, and advanced statistical algorithms to automate data preparation, insight generation, and explanation. This innovative approach eliminates manual bottlenecks, enabling businesses to uncover critical patterns without relying solely on specialized data teams.

By embedding artificial intelligence capabilities within intuitive analytics platforms, augmented analytics democratizes access to analytical insights, empowering users across all functional areas. From finance and operations to marketing and human resources, decision-makers can now leverage sophisticated predictive modeling and conversational interfaces to inform strategic planning, optimize resource allocation, and respond swiftly to market fluctuations.

This executive summary will guide you through the transformative shifts shaping the augmented analytics landscape, assess the implications of recent United States tariff changes, delve into key segmentation and regional insights, highlight leading technology company strategies, and offer actionable recommendations for industry leaders. A rigorous research methodology underpins every conclusion, ensuring the findings reflect the latest trends and best practices in augmented analytics adoption.

Navigating evolving dynamics as artificial intelligence and machine learning redefine the analytics landscape and democratize insights within enterprises

The analytics terrain has undergone rapid evolution, driven by exponential growth in data volumes and increased complexity in data sources. Traditional business intelligence tools, once reliant on manual querying and static dashboards, have reached their limits in delivering real-time, scalable insights. In response, organizations are embracing augmented analytics to accelerate decision cycles and maintain competitive relevance.

At the core of this shift lies the integration of machine learning and natural language processing, which automates routine analytics tasks and surfaces meaningful correlations that may otherwise remain hidden. Consequently, users can interact with data through conversational queries, graphically explore relationships, and receive AI-generated explanations that translate complex statistical outputs into business-friendly narratives.

Furthermore, self-service analytics capabilities are expanding beyond the technical elite, fostering a culture of data literacy across every level of the organization. By reducing dependency on central data teams, enterprises can simultaneously enhance agility and capacity for innovation. As these transformative dynamics continue to mature, the democratization of insights will become a cornerstone of digital initiatives across sectors.

Assessing the far-reaching consequences of United States tariff adjustments in 2025 on technology supply chains and global augmented analytics deployments

In early 2025, newly enacted United States tariffs on imported technology components and enterprise software services have introduced fresh complexities for firms that rely on global supply networks and outsourced analytics solutions. Hardware pricing has increased, prompting IT leaders to reevaluate capital expenditure plans for servers, networking gear, and on-premises infrastructure deployments. These higher costs cascade into broader analytics initiatives, where the balance between cloud migration and local hosting must be carefully assessed.

Simultaneously, service providers facing increased operational expenses are adjusting their managed and professional service rates, which can impact long-term support and implementation budgets. As a result, organizations are exploring strategic partnerships with regional service vendors to mitigate cost pressures while preserving service quality.

In light of these tariff-driven headwinds, many enterprises are bolstering their use of cloud-based analytics platforms, taking advantage of elastic consumption models to reduce upfront investments. Others are diversifying data sourcing strategies and establishing multi-vendor ecosystems to protect against supply chain disruptions. These adaptations underscore the importance of flexible procurement policies and dynamic vendor management in sustaining analytics momentum amid evolving trade policies.

Unearthing critical segmentation revelations that drive strategic adoption across components technologies deployments user profiles applications and industries

Disaggregating the market by component reveals a dual focus on platforms, which deliver core analytics engines and embedded AI capabilities, and services, which encompass both managed services that provide ongoing system administration and professional services that address implementation and customization needs. Enterprises are weighing the trade-offs between end-to-end platform ecosystems and the tailored expertise offered by specialized service providers.

When viewed through a technology lens, artificial intelligence modules are accelerating as the fastest growing segment, integrating with established business intelligence integration tools to streamline data consolidation workflows. Meanwhile, data discovery and visualization solutions play a critical role in presenting automated insights through intuitive dashboards and interactive visual interfaces, ensuring that complex findings remain accessible to diverse user audiences.

Deployment mode preferences are bifurcated between cloud-first adopters, who value on-demand scalability and reduced infrastructure overhead, and organizations with stringent regulatory or security requirements that continue to rely on on-premises installations. This duality underscores the importance of hybrid architectures that can reconcile performance, compliance, and cost considerations in tandem.

Analyzing end-user segmentation, large enterprises maintain significant investments in enterprise-wide analytics programs, leveraging scale to integrate advanced AI-driven forecasting into global operations. In contrast, small and medium-sized enterprises prioritize cost-effective self-service tools that democratize access to insights without necessitating extensive IT support.

Application-based segmentation highlights a broad spectrum of use cases. Fraud detection applications harness anomaly detection algorithms to protect financial transactions. Operations management and supply chain analytics use predictive maintenance and inventory optimization models to reduce downtime and minimize waste. Product development and innovation teams leverage customer sentiment analysis and A/B testing frameworks to refine offerings. Risk and compliance management functions integrate regulatory intelligence into workflow automation. Sales and marketing optimization tactics employ customer segmentation and propensity modeling to enhance campaign targeting. Workforce analytics facilitates talent acquisition strategies and performance management.

Finally, the end-use segmentation spans a diverse array of industries. Banking, financial services, and insurance firms adopt predictive risk analytics to underwrite policies. Educational institutions explore learning analytics to personalize student experiences. Energy and utilities players deploy sensor-based data analysis to manage grid reliability. Government agencies leverage open data platforms to drive transparency. In healthcare and life sciences, patient outcome modeling guides resource allocation. Manufacturing companies integrate IoT telemetry with AI for quality control. Media and entertainment organizations mine consumer behavior data for content personalization. Oil and gas entities utilize geospatial analytics to optimize exploration. Retail and consumer goods retailers implement demand forecasting for inventory planning. Telecommunications and IT providers monitor network performance with real-time anomaly detection. Transportation and logistics enterprises streamline route optimization and fleet management through predictive scheduling.

Revealing region-specific trends and market maturation trajectories shaping the demand for augmented analytics solutions across major global territories

The Americas region continues to lead in augmented analytics adoption, driven by high digital maturity, a robust technology infrastructure, and a competitive corporate landscape that prizes rapid innovation. Both public and private sectors are investing heavily in AI-driven data platforms to enhance customer experience, streamline operations, and comply with evolving data privacy regulations. As a result, North American enterprises are setting benchmarks for self-service capabilities and conversational analytics that peer regions seek to emulate.

In Europe, the Middle East, and Africa, market dynamics are shaped by stringent regulatory frameworks such as the General Data Protection Regulation, which place a premium on data governance and transparency. Organizations in these territories are balancing compliance with the drive to implement advanced analytics within manufacturing, energy, and government functions. Meanwhile, the rise of digital transformation initiatives across emerging markets in Africa and the Gulf Cooperation Council is fostering new opportunities for regional analytics players to offer localized solutions.

Asia-Pacific presents a fragmented yet rapidly growing market environment. High-growth economies such as China and India are investing in digital infrastructure and AI research, with government-led smart city and Industry 4.0 initiatives fueling demand for real-time analytics. Southeast Asian nations are increasingly adopting cloud-based augmented analytics platforms to support e-commerce expansion and fintech innovations. Across the region, the convergence of 5G connectivity, edge computing, and AI promises to unlock novel use cases in manufacturing automation, healthcare diagnostics, and logistics optimization.

Examining strategic initiatives and innovation trajectories of leading technology firms shaping the augmented analytics ecosystem in 2025 and beyond

Leading technology firms are forging strategic partnerships, executing targeted acquisitions, and expanding their AI-capable analytics suites to secure competitive advantage. Microsoft has integrated automated machine learning and natural language query features within its cloud platform, while IBM is embedding Watson AI capabilities into hybrid data environments to support complex enterprise use cases. SAS continues to leverage its deep statistical heritage, enhancing automated analytics pipelines with advanced model interpretability tools.

Salesforce, through its acquisition of Tableau, is focusing on seamless integration between customer relationship management data and augmented insights, enabling sales and marketing leaders to derive real-time recommendations. Qlik has championed an active intelligence approach, offering alerting and event-driven analytics that notify users of significant data deviations as they occur. ThoughtSpot is gaining traction with its search-driven analytics interface, enabling users to pose conversational queries against large-scale data warehouses.

Oracle's strategy emphasizes converged database capabilities, embedding AI-driven anomaly detection and time series forecasting directly within its autonomous cloud services. SAP's analytics cloud platform is pursuing deeper integration with enterprise resource planning systems, providing embedded insights across core business processes. TIBCO is advancing its streaming analytics solutions to support edge computing scenarios, while Yellowfin focuses on augmented storytelling features that guide users through insight narratives.

These strategic initiatives underscore a broader industry imperative to deliver AI-enriched analytics experiences that seamlessly align with existing enterprise ecosystems. As vendors continue to refine their product roadmaps, differentiated offerings centered on automation, embedded intelligence, and user-centric design will define the competitive battleground.

Delivering concrete actionable strategies to capitalize on augmented analytics advancements and overcome organizational barriers to data-driven innovation

To fully leverage the promise of augmented analytics, organizational leadership must first cultivate a culture of data literacy, investing in training programs that demystify AI-driven insights for non-technical stakeholders. Equally important is the implementation of robust data governance frameworks that safeguard data quality, privacy, and ethical use throughout the analytics lifecycle.

Industry leaders should prioritize partnerships with cloud service providers and specialized analytics vendors to accelerate deployment timelines and tap into best-in-class AI capabilities. By adopting modular, API-driven architectures, enterprises can avoid vendor lock-in and rapidly integrate emerging technologies as they become available.

Fostering cross-functional collaboration between IT, analytics, and business units is critical for aligning analytics initiatives with strategic objectives. Establishing analytics centers of excellence can serve as catalysts for standardizing methodologies, sharing reusable assets, and disseminating best practices across the organization.

Given tariff-induced cost pressures, finance and procurement teams must adopt flexible contracting strategies that hedge against pricing volatility. Exploring multi-region cloud subscriptions and leveraging spot instances can deliver cost efficiencies without compromising performance or compliance.

Technology roadmaps should incorporate hybrid deployment models that balance the agility of cloud services with the security controls of on-premises environments. This approach allows organizations to optimize workloads based on regulatory considerations, latency requirements, and operational preferences.

Finally, continuous performance monitoring combined with automated alerting mechanisms will be indispensable for maintaining the reliability and relevance of analytics outputs. By embedding feedback loops and performance metrics into analytics workflows, leaders can iteratively refine models, drive higher adoption rates, and achieve sustained business impact.

Detailing a rigorous mixed-method research approach combining qualitative insights and quantitative validation for robust augmented analytics market analysis

This research report is informed by a mixed-methods approach that blends qualitative insights with quantitative validation. Primary research involved in-depth interviews with senior analytics professionals, IT decision-makers, and industry subject-matter experts. These conversations provided firsthand perspectives on adoption drivers, technology preferences, and strategic imperatives.

Secondary research drew upon a comprehensive review of publicly available whitepapers, peer-reviewed journals, corporate press releases, and case studies. Data from technology consortiums, regulatory filings, and analyst briefings were synthesized to triangulate key market dynamics and vendor positioning.

The analytical framework employed thematic coding to identify emerging trends and pain points, followed by statistical cross-tabulation to validate the prevalence of specific use cases and technology configurations across industries. A rigorous peer review process ensured that all insights underwent validation by multiple research analysts, enhancing the reliability and objectivity of the findings.

Ethical considerations, including data privacy and disclosure compliance, were strictly adhered to throughout the research. Wherever possible, anonymized data sets were used to protect organizational confidentiality, and all vendor engagements respected non-disclosure agreements. This methodology underpins the robustness and integrity of the report's strategic recommendations.

Consolidating key findings on augmented analytics momentum and strategic imperatives to drive future organizational excellence in data utilization

The accelerated adoption of augmented analytics marks a seminal moment in the evolution of data-driven decision-making. Organizations that harness AI-powered automation will achieve faster time-to-insight, drive operational efficiencies, and unlock new revenue streams. As machine learning and natural language processing capabilities become more accessible, the divide between data specialists and business users will continue to narrow.

Strategic segmentation insights highlight the pivotal role of integrated platforms and specialized services in meeting evolving enterprise requirements. Meanwhile, regional analyses underscore the interplay between regulatory environments, digital infrastructure, and market maturity in shaping adoption patterns across the Americas, Europe, Middle East and Africa, and Asia-Pacific.

The ramifications of shifting trade policies in 2025 reinforce the need for supply chain resilience and agile procurement strategies. In parallel, leading technology firms are refining their AI-centric roadmaps to deliver differentiated user experiences and embedded intelligence across core business applications.

Looking ahead, organizations that embrace a holistic approach-combining data governance, cross-functional collaboration, flexible architectures, and continuous performance monitoring-will secure a sustainable competitive edge. By adhering to the actionable recommendations outlined herein, business leaders can navigate complexity, mitigate risk, and drive transformative outcomes.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Adoption of automated data storytelling powered by natural language generation to enhance decision making
  • 5.2. Implementation of no-code machine learning workflows in augmented analytics platforms for citizen data scientists
  • 5.3. Integration of real-time anomaly detection capabilities leveraging streaming data and ai models
  • 5.4. Expansion of embedded augmented analytics features within enterprise applications for seamless user experiences
  • 5.5. Use of augmented analytics to automate data quality profiling and anomaly identification in complex datasets

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Augmented Analytics Market, by Component

  • 8.1. Introduction
  • 8.2. Platforms
  • 8.3. Services
    • 8.3.1. Managed Services
    • 8.3.2. Professional Services

9. Augmented Analytics Market, by Technology

  • 9.1. Introduction
  • 9.2. Artificial Intelligence (AI)
  • 9.3. Business Intelligence (BI) Integration Tools
  • 9.4. Data Discovery & Visualization Tools

10. Augmented Analytics Market, by Deployment Mode

  • 10.1. Introduction
  • 10.2. Cloud
  • 10.3. On Premises

11. Augmented Analytics Market, by End User

  • 11.1. Introduction
  • 11.2. Large Enterprise
  • 11.3. SMEs

12. Augmented Analytics Market, by Application

  • 12.1. Introduction
  • 12.2. Fraud Detection
  • 12.3. Operations Management
  • 12.4. Product Development & Innovation
  • 12.5. Risk & Compliance Management
  • 12.6. Sales & Marketing Optimization
  • 12.7. Supply Chain Analytics
  • 12.8. Workforce Analytics

13. Augmented Analytics Market, by End-use

  • 13.1. Introduction
  • 13.2. Banking, Financial Services, and Insurance (BFSI)
  • 13.3. Education
  • 13.4. Energy & Utilities
  • 13.5. Government & Public Sector
  • 13.6. Healthcare & Life Sciences
  • 13.7. Manufacturing
  • 13.8. Media & Entertainment
  • 13.9. Oil & Gas
  • 13.10. Retail & Consumer Goods
  • 13.11. Telecommunications & Information Technology (IT)
  • 13.12. Transportation & Logistics

14. Americas Augmented Analytics Market

  • 14.1. Introduction
  • 14.2. United States
  • 14.3. Canada
  • 14.4. Mexico
  • 14.5. Brazil
  • 14.6. Argentina

15. Europe, Middle East & Africa Augmented Analytics Market

  • 15.1. Introduction
  • 15.2. United Kingdom
  • 15.3. Germany
  • 15.4. France
  • 15.5. Russia
  • 15.6. Italy
  • 15.7. Spain
  • 15.8. United Arab Emirates
  • 15.9. Saudi Arabia
  • 15.10. South Africa
  • 15.11. Denmark
  • 15.12. Netherlands
  • 15.13. Qatar
  • 15.14. Finland
  • 15.15. Sweden
  • 15.16. Nigeria
  • 15.17. Egypt
  • 15.18. Turkey
  • 15.19. Israel
  • 15.20. Norway
  • 15.21. Poland
  • 15.22. Switzerland

16. Asia-Pacific Augmented Analytics Market

  • 16.1. Introduction
  • 16.2. China
  • 16.3. India
  • 16.4. Japan
  • 16.5. Australia
  • 16.6. South Korea
  • 16.7. Indonesia
  • 16.8. Thailand
  • 16.9. Philippines
  • 16.10. Malaysia
  • 16.11. Singapore
  • 16.12. Vietnam
  • 16.13. Taiwan

17. Competitive Landscape

  • 17.1. Market Share Analysis, 2024
  • 17.2. FPNV Positioning Matrix, 2024
  • 17.3. Competitive Analysis
    • 17.3.1. Actian Corporation
    • 17.3.2. Aible, Inc.
    • 17.3.3. Altair Engineering Inc.
    • 17.3.4. Alteryx, Inc.
    • 17.3.5. AtScale, Inc.
    • 17.3.6. Databricks, Inc.
    • 17.3.7. DataRobot, Inc.
    • 17.3.8. Domo, Inc.
    • 17.3.9. DotData, Inc.
    • 17.3.10. GoodData Corporation
    • 17.3.11. Infor Equity Holdings, LLC
    • 17.3.12. International Business Machines Corporation
    • 17.3.13. KNIME AG
    • 17.3.14. Microsoft Corporation
    • 17.3.15. MicroStrategy Incorporated
    • 17.3.16. Oracle Corporation
    • 17.3.17. QlikTech International AB
    • 17.3.18. Salesforce, Inc.
    • 17.3.19. SAP SE
    • 17.3.20. SAS Institute Inc.
    • 17.3.21. Sisense, Inc.
    • 17.3.22. Tellius, Inc.
    • 17.3.23. ThoughtSpot, Inc.
    • 17.3.24. Yellowfin BI
    • 17.3.25. Zoho Corporation

18. ResearchAI

19. ResearchStatistics

20. ResearchContacts

21. ResearchArticles

22. Appendix

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제