시장보고서
상품코드
1840570

외골격 시장 : 제품 유형, 소재 유형, 용도별 - 세계 예측(2025-2032년)

Exoskeleton Market by Product Type, Material Type, Application - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 192 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

외골격 시장은 2032년까지 연평균 복합 성장률(CAGR) 19.17%로 40억 6,827만 달러에 이를 것으로 예측됩니다.

주요 시장 통계
기준 연도 : 2024년 9억 9,981만 달러
추정 연도 : 2025년 11억 9,199만 달러
예측 연도 : 2032년 40억 6,827만 달러
CAGR(%) 19.17%

실용적인 외골격 채택을 촉진하는 기술, 임상 검증, 공급망 선택 조정, 경영진을 위한 간결하고 전략적인 방향을 제시합니다.

웨어러블 로봇의 등장으로 외골격은 틈새 연구 프로토타입에서 헬스케어, 산업 인체공학, 접근성 용도 등 점점 더 현실적인 도구로 변모하고 있습니다. 이 경영진 요약은 채택의 궤도를 바꾸고 있는 기술 발전, 규제 발전, 공급망 역학, 이해관계자 인센티브를 통합하고 있습니다. 임상 검증, 사용자 중심 설계, 제조 규모가 어떻게 교차하여 경쟁 우위를 창출하는지를 밝히고, 경영진이 제품 개발, 시험, 전략적 파트너십에 투자할 때 고려해야 할 경영상의 트레이드오프를 구성합니다.

이해관계자들이 다음 상업적 개발의 다음 파도를 평가할 때, 새로움뿐만 아니라 상호운용성, 사용자 편의성, 입증 가능한 성과에 초점을 맞추었습니다. 그 결과, 성공 여부는 이동성, 작업장 안전, 재활 성과 등 측정 가능한 개선을 보장하기 위해 임상적 증거 창출, 휴먼팩터 엔지니어링, 부품 조달, 서비스 제공 등 다양한 기능적 역량을 통합하는 데 달려 있습니다. 에 달려 있습니다. 이 요약의 목적은 기술, 규제, 공급 측면의 리스크를 줄이면서 보급을 가속화할 수 있는 개입 방안의 우선순위를 정할 수 있도록 리더십 팀을 안내하는 것입니다.

외골격 개발자와 채용자의 경쟁 환경과 운영 환경을 재정의하기 위해 몇 가지 변혁적인 변화가 일어나고 있습니다. 경량 소재, 센서 융합, 저지연 제어 알고리즘, 배터리 밀도의 발전으로 보다 편안하고, 안정적이며, 장시간 사용에도 적합한 장치를 만들 수 있게 되었습니다. 동시에 인간 중심 설계가 강조되면서 편안함과 기존 워크플로우에의 통합 용이성이 우선시되고, 순수한 기술 사양이 아닌 사용 가능한 결과로 평가받는 제품이 등장하고 있습니다.

이와 함께 임상적 근거 기반도 성숙해졌습니다. 더 오랜 기간의 연구와 더 광범위한 기능적 평가변수를 통해 임상의, 지불자 및 이해관계자의 신뢰가 향상되고 있습니다. 이러한 변화는 장비 제공과 결과 기반 서비스 계약 또는 서비스형 재활을 결합한 새로운 상업적 모델을 촉진하고 있습니다. 마지막으로, 디지털 연결 및 원격 모니터링 기능은 고립된 장비를 네트워크화된 관리 및 작업장 안전 플랫폼으로 전환하여 총소유비용을 절감하고 장기적인 성능 추적 및 예방적 유지보수를 가능하게 하여 사용자의 신뢰도를 높입니다.

2025년 진화하는 미국의 관세 조치가 외골격 관계자의 조달, 제조 발자국, 조달 리스크 관리를 재구성하는 방법에 대한 분석

2025년 무역 정책 및 관세 조정으로 인해 외골격 생태계 전반의 조달 전략, 공급업체 선택, 설비 투자 의사 결정에 새로운 고려 사항이 도입되었습니다. 일부 수입 부품에 대한 관세 인상은 지속적인 물류 불안정성과 원산지 요건의 변화와 함께 탄력적인 조달 전략과 긴밀한 공급업체 파트너십의 중요성을 높이고 있습니다. 이러한 움직임 속에서 제조업체들은 부품표 구성을 재검토하고, 주요 공급업체와 장기 계약을 협상하고, 관세 및 운송 위험에 대한 노출을 줄이기 위해 현지 조달 및 지역 조달을 고려하지 않을 수 없게 되었습니다.

그 결과, 조달팀은 관세 분류의 정확성, 통관 규정 준수, 비용 통과를 줄이기 위한 대체 라우팅에 더 많은 관심을 기울이고 있습니다. 당장의 무역에 미치는 영향 외에도 관세로 인한 불확실성으로 인해 액추에이터, 배터리 모듈, 복합 구조 요소 등 고부가가치 및 관세에 취약한 부품의 지역 제조 허브 및 수직 통합에 대한 논의가 가속화되고 있습니다. 그 결과, 주요 기업들은 재조립의 자본 집약도와 리드 타임 단축, 품질 관리 개선, 설계 및 테스트 팀과의 긴밀한 협력과 같은 업무상의 이점과 균형을 맞추기 위해 노력하고 있습니다.

제품 아키텍처, 재료 선택, 용도 집중에 따라 외골격의 상업적 및 기술적 경로가 어떻게 나뉘는지 보여주는 상세한 세분화 인사이트를 제공합니다.

부문 수준의 역학은 제품 유형, 재료 선택, 응용 분야별로 서로 다른 기회와 위험 프로파일을 드러냅니다. 제품 유형에 따라 시장은 전신 외골격, 하체 외골격, 상체 외골격, 상체 외골격으로 분류됩니다. 하체용 외골격은 비동력 하체용과 동력 하체용에 대해 추가로 조사했습니다. 상체용 외골격은 가슴 지지대, 의료 기능 강화, 어깨 지지대에 대해 더 연구하고 있습니다. 전신 시스템은 여러 관절의 협응 제어가 필요한 복잡한 재활 및 산업 작업을 대상으로 하는 경우가 많습니다. 하체 제품의 경우, 비 전동식 솔루션이 수동적 지원과 저렴한 가격에 중점을 둔 반면 전동식 하체 시스템은 능동적 지원과 임상 등급의 성능을 우선시합니다. 상체용 장치는 수동적인 가슴 지지대부터 개별적인 기능 장애 및 작업 부하를 분산시키는 의료용 어깨 및 가슴 강화 모듈에 이르기까지 다양합니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 외골격 시장 : 제품 유형별

  • 전신 외골격
  • 하반신 외골격
    • 비전동 하반신
    • 전동 하반신
  • 상반신 외골격
    • 흉부 지원
    • 의료 강화
    • 숄더 지원

제9장 외골격 시장 : 소재 유형별

  • 복합재료
    • 탄소섬유
    • 고분자 복합재료
  • 철강 및 합금
    • 중량급 구조
    • 경량 프레임

제10장 외골격 시장 : 용도별

  • 접근성 보조도구
    • 이동 지원
    • 물리치료
  • 헬스케어
    • 고령자 지원
    • 재활치료 및 테라피
    • 외과 수술 보조

제11장 외골격 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제12장 외골격 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제13장 외골격 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제14장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • ABLE Human Motion S.L.
    • B-Temia
    • Comau S.p.A.
    • CYBERDYNE INC.
    • Ekso Bionics Holdings, Inc.
    • German Bionic Systems GmbH
    • GOGOA MOBILITY ROBOTS, SL
    • HeroWear, LLC
    • Hocoma AG
    • Hyundai Motor Group
    • Laevo BV
    • Lifeward, Inc.
    • Lockheed Martin Corporation.
    • MAWASHI SCIENCE & TECHNOLOGY
    • Myomo Inc.
    • Ottobock SE
    • Panasonic Holdings Corporation
    • RB3D
    • Rex Bionics Ltd.
    • Robert Bosch GmbH
    • Shanghai Fourier Intelligence Co. Ltd.
    • Wandercraft
LSH 25.10.22

The Exoskeleton Market is projected to grow by USD 4,068.27 million at a CAGR of 19.17% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 999.81 million
Estimated Year [2025] USD 1,191.99 million
Forecast Year [2032] USD 4,068.27 million
CAGR (%) 19.17%

A concise and strategic orientation for executives to align technology, clinical validation, and supply chain choices driving practical exoskeleton adoption

The emergence of wearable robotics has shifted exoskeletons from niche research prototypes to increasingly viable tools across healthcare, industrial ergonomics, and accessibility applications. This executive summary synthesizes technological advances, regulatory developments, supply chain dynamics, and stakeholder incentives that are reshaping adoption trajectories. It highlights where clinical validation, user-centric design, and manufacturing scale intersect to create competitive advantage, and it frames the operational trade-offs executives must weigh when investing in product development, trials, or strategic partnerships.

As stakeholders evaluate the next wave of commercial deployments, emphasis has moved toward interoperability, user comfort, and demonstrable outcomes rather than novelty alone. Consequently, success now depends on aligning cross-functional capabilities-clinical evidence generation, human factors engineering, component sourcing, and service delivery-to ensure devices deliver measurable improvements in mobility, workplace safety, or rehabilitative outcomes. This summary aims to guide leadership teams in prioritizing interventions that accelerate adoption while mitigating technical, regulatory, and supply-side risks.

Several transformative shifts are converging to redefine the competitive and operational landscape for exoskeleton developers and adopters. Advances in lightweight materials, sensor fusion, low-latency control algorithms, and battery density are enabling devices that are more comfortable, reliable, and suited for prolonged daily use. Concurrently, an increased emphasis on human-centered design has prioritized comfort and ease of integration into existing workflows, bringing forward products that are evaluated on usable outcomes rather than purely technical specifications.

In parallel, the clinical evidence base has matured: longer-duration studies and broader functional endpoints are improving stakeholder confidence among clinicians, payers, and employers. This shift is encouraging new commercial models that combine device provision with outcome-based service contracts and rehabilitation-as-a-service structures. Finally, digital connectivity and remote monitoring capabilities are converting isolated devices into networked care and workplace safety platforms, enabling longitudinal performance tracking and proactive maintenance that reduce total cost of ownership and increase user trust.

Analysis of how evolving United States tariff measures in 2025 are reshaping sourcing, manufacturing footprint, and procurement risk management for exoskeleton stakeholders

Trade policy and tariff adjustments in 2025 have introduced renewed considerations for procurement strategies, supplier selection, and capital investment decisions across the exoskeleton ecosystem. Higher duties on some imported components, combined with ongoing logistics volatility and changing country-of-origin requirements, have increased the importance of resilient sourcing strategies and closer supplier partnerships. These dynamics have compelled manufacturers to reassess bill-of-materials composition, negotiate longer-term contracts with critical suppliers, and explore local or regional assembly to reduce exposure to tariff and transit risks.

As a result, procurement teams are placing greater emphasis on tariff classification accuracy, customs compliance, and alternative routing to mitigate cost pass-through. In addition to near-term transactional effects, tariff-driven uncertainty has accelerated conversations around regional manufacturing hubs and vertical integration for high-value, tariff-sensitive components such as actuators, battery modules, and composite structural elements. Consequently, companies are balancing the capital intensity of reshoring against the operational advantages of reduced lead times, improved quality control, and closer collaboration with design and testing teams.

Detailed segmentation insights showing how product architecture, material choices, and application focus create distinct commercial and technical pathways for exoskeletons

Segment-level dynamics reveal differentiated opportunity and risk profiles across product types, material choices, and application domains. Based on Product Type, market is studied across Full Body Exoskeletons, Lower Body Exoskeletons, and Upper Body Exoskeletons. The Lower Body Exoskeletons is further studied across Non-Powered Lower Body and Powered Lower Body. The Upper Body Exoskeletons is further studied across Chest Support, Medical Enhancements, and Shoulder Support. Full body systems increasingly target complex rehabilitative and industrial tasks requiring coordinated control across multiple joints, whereas lower body variants tend to focus on mobility assistance and workplace load redistribution. Within lower body offerings, non-powered solutions emphasize passive support and affordability while powered lower body systems prioritize active assistance and clinical-grade performance. Upper body devices span passive chest support to medically oriented shoulder and chest enhancement modules that address discrete functional deficits or workload distribution.

Based on Material Type, market is studied across Composites and Steel & Alloys. The Composites is further studied across Carbon Fibers and Polymeric Composites. The Steel & Alloys is further studied across Heavy-Duty Constructs and Lightweight Frames. Composite structures, particularly carbon fiber and advanced polymeric composites, provide strength-to-weight advantages that enhance wearer comfort and increase battery endurance, whereas steel and alloy frameworks remain attractive for heavy-duty industrial applications requiring robustness and cost efficiency. Innovations in hybrid material systems and modular architectures are enabling manufacturers to tailor stiffness, durability, and cost parameters to specific customer segments.

Based on Application, market is studied across Accessibility Aids and Healthcare. The Accessibility Aids is further studied across Mobility Assistance and Physical Therapy. The Healthcare is further studied across Elderly Assistance, Rehabilitation & Therapy, and Surgical Assistance. Accessibility-oriented devices emphasize ease of use, intuitiveness, and durable value propositions for independent users, while healthcare applications require rigorous clinical validation, integration into care pathways, and compatibility with reimbursement mechanisms. Rehabilitation and elderly assistance impose different usability and safety specifications than surgical assistive modules, prompting specialized control strategies and service models to support diverse clinical workflows.

Comparative regional perspectives revealing how regulatory frameworks, procurement practices, and manufacturing ecosystems influence exoskeleton adoption across global markets

Regional dynamics are shaping where innovation, commercialization, and adoption occur, with each geography presenting distinctive regulatory climates, healthcare priorities, and industrial end-use cases. Americas continue to combine strong private sector investment, healthcare provider networks with an appetite for pilot deployments, and defense and industrial use cases that prioritize ruggedness and scalable service models. The regulatory landscape in North America increasingly emphasizes empirical outcomes and interoperability, prompting suppliers to demonstrate longitudinal benefits and to integrate remote monitoring for payer and employer reassurance.

Europe, Middle East & Africa exhibits a heterogeneous set of drivers where robust public healthcare systems and stringent safety standards create both barriers to entry and clear pathways for devices that can demonstrate clinical effectiveness and cost efficiency. Fragmented reimbursement pathways encourage consortium-based adoption models and partnerships with compliance specialists. In contrast, market opportunities in some Middle Eastern and African markets are emerging through public procurement for rehabilitation and occupational safety programs. Asia-Pacific features rapid technology adoption in select urban centers, strong manufacturing ecosystems for components, and government-led initiatives to modernize eldercare and industrial productivity. Governments and private sector actors in the region are actively exploring localized production and public-private partnerships to accelerate trials and deployments.

Corporate strategic dynamics emphasizing platformization, evidence-driven product positioning, and service-oriented revenue models among leading exoskeleton stakeholders

Competitive positioning is increasingly defined by an organization's ability to combine compelling hardware, validated clinical outcomes, and scalable service delivery. Leading developers and manufacturers are adopting hybrid business models that combine device sales with outcome-linked services, maintenance programs, and data-driven subscription offerings. Strategic partnerships between technology specialists, clinical networks, and industrial distributors are common, enabling faster pilot programs and deeper integration into user workflows. Intellectual property portfolios around control algorithms, sensor fusion, and lightweight structures are critical assets that differentiate firms and can be leveraged in licensing or cross-licensing arrangements.

Investment patterns show sustained interest in firms that move beyond single-product propositions toward platform approaches that support modular upgrades and multi-application use. Mergers and acquisitions activity tends to favor targets with strong clinical evidence, established procurement channels in healthcare or industrial markets, and proprietary supply chain capabilities for high-cost components. Additionally, companies that prioritize post-sale services-training, remote monitoring, and outcome verification-are better positioned to capture long-term value and to build defensible recurring revenue streams.

Actionable strategic guidance for executives to accelerate adoption by focusing on usability, evidence generation, resilient supply chains, and outcome-based commercial models

Industry leaders should prioritize building integrated capabilities across product development, clinical validation, and supply chain resilience to capture near-term adoption windows. Investing in human factors and iterative usability testing will reduce abandonment risk and accelerate acceptance among clinicians and frontline workers. Simultaneously, organizations should invest in longitudinal clinical studies and real-world evidence generation to support procurement decisions by healthcare systems and large employers, thereby unlocking more sustainable commercialization pathways.

On the operational front, diversify supplier relationships for tariff-sensitive components and evaluate regional assembly to reduce lead-time risk while maintaining cost discipline. Form strategic partnerships with rehabilitation providers, industrial safety organizations, and insurance intermediaries to pilot outcome-linked reimbursement or employer-funded adoption programs. Finally, commercial teams should design service propositions that include training, remote monitoring, and performance verification, thereby aligning payment flows with realized outcomes and creating recurring revenue opportunities that underpin longer-term valuation growth.

Transparent and reproducible research methodology combining primary stakeholder interviews, clinical and patent analysis, and supply chain scenario testing to underpin findings

The insights in this executive summary draw on a structured research methodology that integrates primary and secondary evidence sources to ensure robustness and practical relevance. Primary inputs include interviews with device developers, clinical researchers, procurement leaders, and end users to capture on-the-ground perspectives about usability, reimbursement barriers, and procurement criteria. These qualitative inputs are triangulated with public clinical trial registries, regulatory guidance documents, patent landscapes, and peer-reviewed literature to map technology maturation, safety considerations, and evidence gaps.

Supplementing these sources, supply chain analyses examine component sourcing, tariff exposure, and lead-time variability to understand operational risks. Scenario analyses and sensitivity testing are used to explore how policy shifts, technology improvements, or capital allocation choices could alter strategic priorities. Throughout the methodology, emphasis is placed on transparency of assumptions, reproducibility of analyses, and the credibility of primary-source quotations to ensure the findings are actionable for corporate leadership and public-sector decision-makers.

Synthesis of strategic imperatives and risk mitigations that leaders must pursue to convert exoskeleton innovation into sustained commercial and clinical value

The exoskeleton sector stands at a pivotal inflection point where technological progress, improving evidence standards, and shifting commercial models are converging to unlock broader real-world value. To capitalize on this transition, stakeholders must coordinate investments in ergonomic design, clinical validation, and resilient manufacturing while exploring commercial structures that align payment with measurable outcomes. Those that balance innovation with pragmatic service delivery and regulatory compliance will be best positioned to transition from pilot projects to scaled operations.

While challenges remain-regulatory complexity, interoperability, and tariff-driven supply risks-there are clear pathways for executives to mitigate these barriers through targeted partnerships, regional manufacturing strategies, and a focus on evidence generation. The actionable insights provided here are intended to inform strategic planning and to catalyze initiatives that convert technical promise into durable commercial impact.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Integration of AI and machine learning to improve exoskeleton adaptability and performance
  • 5.2. Implementation of exoskeletons in military training and combat support roles for enhanced soldier capabilities
  • 5.3. Regulatory and safety standard developments impacting exoskeleton market growth and acceptance
  • 5.4. Rising investment and collaborations between tech firms and healthcare providers to innovate exoskeleton solutions
  • 5.5. Increased focus on human-machine interface improvements for seamless exoskeleton control
  • 5.6. Development of customized and modular exoskeletons for various user needs and industries
  • 5.7. Growing adoption of exoskeletons in industrial sectors to reduce worker fatigue and injury risks
  • 5.8. Advancements in battery technology extending exoskeleton operational duration and efficiency
  • 5.9. Expansion of exoskeleton applications in medical rehabilitation and assistive technology
  • 5.10. Emergence of lightweight and flexible exoskeleton designs for enhanced user comfort and mobility

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Exoskeleton Market, by Product Type

  • 8.1. Full Body Exoskeletons
  • 8.2. Lower Body Exoskeletons
    • 8.2.1. Non-Powered Lower Body
    • 8.2.2. Powered Lower Body
  • 8.3. Upper Body Exoskeletons
    • 8.3.1. Chest Support
    • 8.3.2. Medical Enhancements
    • 8.3.3. Shoulder Support

9. Exoskeleton Market, by Material Type

  • 9.1. Composites
    • 9.1.1. Carbon Fibers
    • 9.1.2. Polymeric Composites
  • 9.2. Steel & Alloys
    • 9.2.1. Heavy-Duty Constructs
    • 9.2.2. Lightweight Frames

10. Exoskeleton Market, by Application

  • 10.1. Accessibility Aids
    • 10.1.1. Mobility Assistance
    • 10.1.2. Physical Therapy
  • 10.2. Healthcare
    • 10.2.1. Elderly Assistance
    • 10.2.2. Rehabilitation & Therapy
    • 10.2.3. Surgical Assistance

11. Exoskeleton Market, by Region

  • 11.1. Americas
    • 11.1.1. North America
    • 11.1.2. Latin America
  • 11.2. Europe, Middle East & Africa
    • 11.2.1. Europe
    • 11.2.2. Middle East
    • 11.2.3. Africa
  • 11.3. Asia-Pacific

12. Exoskeleton Market, by Group

  • 12.1. ASEAN
  • 12.2. GCC
  • 12.3. European Union
  • 12.4. BRICS
  • 12.5. G7
  • 12.6. NATO

13. Exoskeleton Market, by Country

  • 13.1. United States
  • 13.2. Canada
  • 13.3. Mexico
  • 13.4. Brazil
  • 13.5. United Kingdom
  • 13.6. Germany
  • 13.7. France
  • 13.8. Russia
  • 13.9. Italy
  • 13.10. Spain
  • 13.11. China
  • 13.12. India
  • 13.13. Japan
  • 13.14. Australia
  • 13.15. South Korea

14. Competitive Landscape

  • 14.1. Market Share Analysis, 2024
  • 14.2. FPNV Positioning Matrix, 2024
  • 14.3. Competitive Analysis
    • 14.3.1. ABLE Human Motion S.L.
    • 14.3.2. B-Temia
    • 14.3.3. Comau S.p.A.
    • 14.3.4. CYBERDYNE INC.
    • 14.3.5. Ekso Bionics Holdings, Inc.
    • 14.3.6. German Bionic Systems GmbH
    • 14.3.7. GOGOA MOBILITY ROBOTS, SL
    • 14.3.8. HeroWear, LLC
    • 14.3.9. Hocoma AG
    • 14.3.10. Hyundai Motor Group
    • 14.3.11. Laevo BV
    • 14.3.12. Lifeward, Inc.
    • 14.3.13. Lockheed Martin Corporation.
    • 14.3.14. MAWASHI SCIENCE & TECHNOLOGY
    • 14.3.15. Myomo Inc.
    • 14.3.16. Ottobock SE
    • 14.3.17. Panasonic Holdings Corporation
    • 14.3.18. RB3D
    • 14.3.19. Rex Bionics Ltd.
    • 14.3.20. Robert Bosch GmbH
    • 14.3.21. Shanghai Fourier Intelligence Co. Ltd.
    • 14.3.22. Wandercraft
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제