½ÃÀ庸°í¼­
»óǰÄÚµå
1637731

¼¼°èÀÇ LiDAR ½ÃÀå : Á¡À¯À² ºÐ¼®, »ê¾÷ µ¿Çâ ¹× Åë°è, ¼ºÀå ¿¹Ãø(2025-2030³â)

Global LiDAR - Market Share Analysis, Industry Trends & Statistics, Growth Forecasts (2025 - 2030)

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Mordor Intelligence | ÆäÀÌÁö Á¤º¸: ¿µ¹® | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

¼¼°èÀÇ LiDAR ½ÃÀå ±Ô¸ð´Â 2025³â¿¡ 3Á¶ 800¾ï ´Þ·¯·Î ÃßÁ¤µÇ°í, ¿¹Ãø±â°£(2025-2030³â)ÀÇ CAGRÀº 19.93%·Î Àü¸ÁµÇ¸ç, 2030³â¿¡´Â 7Á¶ 6,500¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù.

Global LiDAR-Market-IMG1

LiDAR ½ÃÀåÀÇ ¼ºÀåÀ» Áõ°¡½ÃŰ´Â ÁÖ¿ä ¿äÀÎ Áß Çϳª´Â UAV¿¡¼­ LiDAR ½Ã½ºÅÛ »ç¿ë Áõ°¡, ¿£Áö´Ï¾î¸µ ¹× °Ç¼³ ¿ëµµ¿¡¼­ LiDAR »ç¿ë, Áö¸® Á¤º¸ ½Ã½ºÅÛ(GIS) ¿ëµµ¿¡¼­ LiDAR »ç¿ë, 4D LiDAR ÃâÇö, ´Ù¾çÇÑ ¿ëµµ¿¡¼­ »ó¿ë ¹«ÀÎ Ç×°ø±â »ç¿ëÀ» µÑ·¯½Ñ ±ÔÁ¦ ¿ÏÈ­ÀÔ´Ï´Ù. ½ÃÀå È®´ëÀÇ ¹ßÆÇÀÌ µÇ°í ÀÖ´Â °ÍÀº UAV³ª ÀÚÀ²ÁÖÇàÂ÷¸¦ µÑ·¯½Ñ ¾ÈÀü¼º¿¡ ´ëÇÑ ¿ì·Á¿Í ÇÕ¸®ÀûÀÎ °¡°ÝÀ¸·Î °æ·®ÀÎ »çÁø Ãø·® ±â±â¿¡ ´ëÇÑ ¾×¼¼½ºÀÔ´Ï´Ù.

ÁÖ¿ä ÇÏÀ̶óÀÌÆ®

  • ¼¼°èÀûÀ¸·Î ƯÈ÷ °³¹ßµµ»ó±¹¿¡¼­´Â Àα¸ Áõ°¡¿¡ ´ëÀÀÇϱâ À§ÇØ ¿£Áö´Ï¾î¸µ°ú Åä¸ñ°Ç¼³ Ȱµ¿ÀÇ ±Ô¸ð¿Í ¹üÀ§°¡ Å©°Ô È®´ëµÇ°í ÀÖ½À´Ï´Ù. Ãø·®°ú ¸ÅÇο¡¼­ ÇÁ·ÎÁ§Æ®ÀÇ °¡¿ë¼º ¿¬±¸¿¡ À̸£±â±îÁö °ÇÃà Ȱµ¿ÀÇ ¸ðµç ´Ü°è¿¡¼­ Á¡Á¡ ´õ ¸¹Àº ±â¼úÀÌ ÇÊ¿äÇÕ´Ï´Ù. LiDAR ±â¼úÀº ±¤´ëÇÑ Áö¿ªÀÇ »ó¼¼ÇÑ Á¶»ç¸¦ ½±°í Á¤È®ÇÏ°Ô ¼öÇàÇÒ ¼ö ÀÖ½À´Ï´Ù. °Ô´Ù°¡, ÀüÁö±¸ Æ÷Áö¼Å´× ½Ã½ºÅÛ Áö¿ø ·¹ÀÌÀú ½ºÄ³³Ê¿Í ¸Å¿ì ¹Î°¨ÇÑ Ä«¸Þ¶ó´Â ¿£Áö´Ï¾î°¡ ÇÁ·ÎÁ§Æ® ±âÁØÀ» ÃæÁ·ÇÏ´Â ¼³°è¿Í Á¤È®ÇÑ ½ÇÇö °¡´É¼º Æò°¡¸¦ ÇÒ ¶§ À¯¿ëÇÕ´Ï´Ù. ÀÌ·Î ÀÎÇØ ¸¹Àº LiDAR ¼­ºñ½º Á¦°ø¾÷ü°¡ ÁøÃâÇϰí ÀÖ½À´Ï´Ù.
  • ¼®À¯, °¡½º ¹× ±¤¾÷ ºÐ¾ß¿¡¼­ LiDAR ±â¼úÀ» ÅëÇØ °úÇÐÀÚ¿Í ¸ÅÇÎ Àü¹®°¡µéÀº ÀÌÀüº¸´Ù ³ôÀº Á¤¹Ðµµ, Á¤È®¼º ¹× À¯¿¬¼ºÀ» °®Ãá ´Ù¾çÇÑ ±Ô¸ðÀÇ °ÇÃ๰°ú ÀÚ¿¬ ȯ°æÀ» Á¶»çÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÚµ¿È­¸¦ À§ÇÑ Á¤ºÎÀÇ Àå·Á¿Í È«¼ö ±¸È£ ¹× °ü¸®¿Í °°Àº ´Ù¾çÇÑ Á¤ºÎ ºÎ¹®ÀÇ È°µ¿¿¡¼­ LiDARÀÇ Ã¤Åõµ ¾÷°èÀÇ ¼ºÀåÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. Àεµ¿¡¼­´Â ±³ÅëºÎ°¡ »õ·Î¿î °í¼Óµµ·Î¸¦ °Ç¼³Çϱâ ÀüÀÇ Ãø·®¿¡ LiDAR ½Ã½ºÅÛÀÇ »ç¿ëÀ» Àǹ«È­Çϰí ÀÖ½À´Ï´Ù.
  • µå·Ð ¶Ç´Â ¹«ÀÎ Ç×°ø±â(UAV)´Â Àúºñ¿ë°ú ¾öû³­ ¿ëµµ·Î ¸¹Àº »ê¾÷¿¡¼­ äÅÃÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù. LiDAR µå·ÐÀº ´ë±â Á¶¼º, Ŭ¶ó¿ìµå, Áö±¸ ±¸Á¶, ¿¡¾î·ÎÁ¹ ¿¬±¸¸¦ À§ÇÑ Àåºñ·Î óÀ½ °³¹ßµÇ¾ú½À´Ï´Ù. ÇöÀçµµ ¼¼°è¿¡¼­ ±âÈÄ °üÃøÀÇ °­·ÂÇÑ µµ±¸°¡ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ µ¥ÀÌÅ͸¦ ¼öÁýÇϰí NOAA ¹× ±âŸ ¿¬±¸ ±â°üÀº ±âÈÄ º¯È­¿¡ ´ëÇÑ ÀÌÇØ¸¦ ³ôÀ̱â À§ÇØ ÀÌ·¯ÇÑ Àåºñ¸¦ ¿î¿µÇÕ´Ï´Ù.
  • ÀÚµ¿Â÷ ºÐ¾ß¿¡¼­ÀÇ ±â¼ú °³¹ßÀÇ °³Ã´Àº LiDAR ½ÃÀåÀÇ ÁÖ¿ä ÃËÁø¿äÀÎÀÔ´Ï´Ù. ±â¾÷Àº ´Ù¾çÇÑ ±â¼úÀÇ À¶ÇÕÀ» ¸ð»öÇϰí ÀÖÀ¸¸ç LiDAR ±â¼úÀÌ Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ ¼ö ÀÖ½À´Ï´Ù.
  • ÀÌ ±â¼úÀÇ °³¹ß°ú °ü·ÃµÈ ³ôÀº ºñ¿ëÀº ÀÌ ½ÃÀåÀÇ ¼ºÀåÀ» ¾ïÁ¦ÇÕ´Ï´Ù. LiDAR ½Ã½ºÅÛÀº ÇâÈÄ ¼ö³â°£ ¹èÄ¡°¡ ¿¹»óµÇ´Â ÀÚÀ²Çü µå·ÐÀ̳ª ÀÚµ¿Â÷¿¡ Ç¥ÁØ ÀåºñµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÚÀ²ÁÖÇàÂ÷ ±â¼úÀÇ ±Þ¼ÓÇÑ ±â¼ú Çõ½Å°ú Á¤ºÎÀÇ Áö¿ø Áõ°¡·Î ¿¹Ãø±â°£ Á¾·á±îÁö ·¹º§ 5 ÀÚÀ²ÁÖÇàÂ÷ÀÇ Á¶±â ¹èÄ¡°¡ ¿¹»óµË´Ï´Ù. ¾÷°è°¡ ¿ÏÀüÇÑ ÀÚÀ²ÁÖÇà Â÷·®À¸·Î À̵¿ÇÔ¿¡ µû¶ó LiDAR ½Ã½ºÅÛ¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù.
  • COVID-19ÀÇ ¹ß»ýÀº ¼¼°è »ê¾÷¿¡ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ÀÚµ¿Â÷ »ê¾÷Àº LiDARÀÇ Áß¿äÇÑ Ã¤¿ë ±â¾÷ Áß ÇϳªÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ¹ß»ýÀ¸·Î ÀÎÇØ ´Ù¾çÇÑ »ý»ê°øÀåÀÌ ¿î¿µÁßÁö°¡ µÇ¾î ¼ö¿ä¿¡ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. ¹ÝµµÃ¼ Àç·áÀÇ ºÎÁ·ÀÌ ´õ¿í »óȲÀ» ¾ÇÈ­½Ã۰í ÀÖ½À´Ï´Ù.

LiDAR ½ÃÀå µ¿Çâ

·Îº¿ Â÷·®ÀÌ ½ÃÀåÀ» °ßÀÎÇÏ´Â ¿äÀÎ Áß Çϳª

  • ÀÌ ºÐ¾ß¿¡¼­´Â ·Îº¿Ä«, ¹«ÀιݼÛÂ÷(AGV), ¹«ÀιݼÛÂ÷, µå·Ð¿¡ LiDAR ±â¼úÀ» »ç¿ëÇÏ´Â °ÍÀÌ °ËÅäµÇ°í ÀÖ½À´Ï´Ù. ADAS(¼±Áø ¿îÀü Áö¿ø ½Ã½ºÅÛ)´Â Advanced Driver Assist System(¼±Áø ¿îÀü Áö¿ø ½Ã½ºÅÛ)ÀÇ À̴ϼÈÀ» ÃëÇÑ °ÍÀÔ´Ï´Ù. LiDARÀº ÇöÀç ÀÚÀ²ÁÖÇàÂ÷ ¹× ÀÚÀ²ÁÖÇàÂ÷ °³¹ß¿¡ »ç¿ëµÇ´Â ÃÖ÷´Ü ±â¼ú Áß ÇϳªÀÔ´Ï´Ù. LiDAR(Light Detection And Ranging)Àº ÀÚÀ² ÁÖÇàÇÏ´Â µå·Ð, ·Îº¿, Â÷·®ÀÌ ³»ºñ°ÔÀ̼Ç, Àå¾Ö¹° °¨Áö, Ãæµ¹ ȸÇÇ¿¡ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.
  • LiDARÀº ÀÚÀ²ÁÖÇà Â÷·®, ¹«ÀÎ ¿î¼Û Â÷·® ¹× ±âŸ µå·ÐÀº ÀÎÀ§ÀûÀÎ ½Ç¼ö¾øÀÌ Á¤È®ÇÑ ÆÇ´ÜÀ» ÇÒ ¼ö ÀÖ¾î Ãæµ¹ÀÇ ¿µÇâÀ» ¹Þ±â ¾î·Æ½À´Ï´Ù. ÀÌ´Â ÃÖ±Ù ±â¼úÀÇ ¹ßÀü°ú LiDAR ¼¾¼­ÀÇ »ó´ëÀûÀÎ ºñ¿ë Àý°¨À¸·Î ÃÖ±Ù Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÚÀ²ÁÖÇà Â÷·®Àº LiDAR ´öºÐ¿¡ ¼¼°è¸¦ 360µµ ³»·Á´Ù º¼ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ °íÁ¤¹ÐµµÀÇ ½ÉµµÁ¤º¸¸¦ ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.
  • AGV¿¡ ÀåÂøµÈ LiDAR ¼¾¼­´Â ¹°Ã¼¿Í Â÷·® »çÀÌÀÇ °Å¸®¸¦ ÃøÁ¤ÇÏ´Â ÀÏ·ÃÀÇ ·¹ÀÌÀú ÆÞ½º¸¦ Àü¼ÛÇÕ´Ï´Ù. ÀÌ ÄÄÆÄÀÏµÈ µ¥ÀÌÅÍ´Â ÀÛ¾÷ ¿µ¿ªÀÇ 360¡Æ ȯ°æ ¸ÊÀ» ÀÛ¼ºÇÕ´Ï´Ù. ÀÌ ¸ÅÇÎÀ» ÅëÇØ AGV´Â ÀÎÇÁ¶ó¸¦ Ãß°¡ÇÏÁö ¾Ê°íµµ ½Ã¼³À» Ž»öÇÒ ¼ö ÀÖ½À´Ï´Ù.
  • ·Îº¿ Â÷·®¿¡ LiDARÀ» »ç¿ëÇÏ·Á¸é ¿©·¯ LiDARÀ» »ç¿ëÇÏ¿© Â÷·® ÁÖº¯À» ¸ÅÇÎÇØ¾ß ÇÕ´Ï´Ù. LiDARÀÇ »ç¿ëÀº ž½ÂÀÚÀÇ ¾ÈÀüÀ» º¸ÀåÇϱâ À§ÇØ ³ôÀº ¼öÁØÀÇ ¼¾¼­ Áߺ¹¼ºÀ» ¿ä±¸ÇÕ´Ï´Ù. ½Â°´À» À§ÇÑ ¿ÏÀü ÀÚÀ²ÁÖÇàÂ÷¿Í ·Îº¿Â÷·®ÀÇ ÀûÀýÇÑ °³¹ßÀº ¾ÆÁ÷ ¾ÕÀ¸·ÎÀ̸ç, LiDAR´Â À̵鿡 À־µµ Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ °ÍÀ¸·Î ±â´ëµÇ°í ÀÖ½À´Ï´Ù.
  • ·Îº¿ ³»ºñ°ÔÀ̼ÇÀ» À§ÇÑ LiDARÀº ȯ°æ ¹× ¹°Ã¼¿¡¼­ Â÷·®ÀÇ À§Ä¡¿¡ ´ëÇÑ Áß¿äÇÑ °Å¸® ÃøÁ¤ Á¤º¸¸¦ Á¦°øÇÕ´Ï´Ù. ±Þ¼Óµµ·Î È®´ëµÇ´Â ÀüÀÚ»ó°Å·¡¿Í Á÷ÀåÀÇ ¾ÈÀü¼º¿¡ ÁßÁ¡À» µÎ°í ÀÚÀ²À̵¿·Îº¿(AMR)°ú ¹«ÀιݼÛÂ÷(AGV) ½ÃÀåÀÇ Å« ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀÎÀº ·Îº¿ Â÷·®ÀÇ LiDAR ¿ëµµ¿¡ ´ëÇÑ ¼ö¿ä¸¦ ³ôÀÌ´Â °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.
  • ¿¹¸¦ µé¾î ½º¸¶Æ® LiDAR ¼¾¼­ ½Ã½ºÅÛ Á¦°ø¾÷üÀÎ RoboSense´Â 2022³â 11¿ù ½ÅÁ¦Ç° RS-LiDAR-E1(E1)À» ¹ßÇ¥Çß½À´Ï´Ù. RS-LiDAR-E1Àº ÀÚü °³¹ßµÈ ¸ÂÃãÇü Ĩ ¹× Ç÷¡½Ã ±â¼ú Ç÷§ÆûÀ» ±â¹ÝÀ¸·Î 360¡Æ¸¦ º¸´Â Ç÷¡½Ã ¼Ö¸®µå ½ºÅ×ÀÌÆ® LiDARÀÔ´Ï´Ù. E1Àº ÆÄÆ®³Ê°¡ ½º¸¶Æ® ¿îÀü Áö°¢ÀÇ °ÝÂ÷¸¦ ¸Þ¿ì°í ÀÚÀ² ÁÖÇàÀÇ ÇÙ½É ±â´ÉÀ» ½ÇÇöÇÏ´Â Áß¿äÇÑ Á¶°¢À¸·Î ÀÚÀ² ÁÖÇà Â÷·®°ú ÀÚÀ² ÁÖÇà Â÷·®ÀÇ ¸ðµç ½Ã³ª¸®¿ÀÀÇ Áö°¢ ´É·ÂÀ» Çâ»ó½ÃŰ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù.
  • °Ô´Ù°¡ ¾ß¿Ü¿¡¼­ Ȱµ¿ÇÏ´Â À̵¿ ·Îº¿Àº GPS¿Í °°Àº Áö¿À·ÎÄÉÀÌ¼Ç ±â´É»Ó¸¸ ¾Æ´Ï¶ó Lidar¿Í °°Àº °¨Áö ±â¼ú¿¡µµ ÀÇÁ¸ÇÏ¿© ÇöÀç À§Ä¡¿Í ¸ñÀûÁö¸¦ ½Äº°ÇÒ ¼ö ÀÖ½À´Ï´Ù. LiDAR ¼¾¼­´Â ³»ºñ°ÔÀÌ¼Ç ¶Ç´Â Àå¾Ö¹° ȸÇÇ ¼¾¼­·Î ºÐ·ùµË´Ï´Ù. ·Îº¿ Â÷·®Àº ±¤¹üÀ§ÇÑ ¿ëµµ·Î ÀÎÇØ ÀüÀÚ»ó°Å·¡ ¸ÅÃâÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ¼ö¿ä°¡ Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ·Îº¿ Â÷·®¿ë LiDAR ½ÃÀåÀº ÀüÀÚ»ó°Å·¡ ¸ÅÃâ Áõ°¡·Î Ȱ¼ºÈ­µÉ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.
  • ¿¹¸¦ µé¾î, º§·Î´ÙÀÎ ¶óÀÌ´õ´Â 2022³â 6¿ù º¸½ºÅÏ ´ÙÀ̳»¹Í½º°¡ ´Ù³â°£ °è¾àÀÇ ÀÏȯÀ¸·Î ȸ»çÀÇ ¶óÀÌ´õ ¼¾¼­¸¦ ·Îº¿¿¡ »ç¿ëÇÑ´Ù°í ¹ßÇ¥Çß½À´Ï´Ù. ÀÌ È¸»ç¿¡ µû¸£¸é, ȸ»çÀÇ ¶óÀÌ´õ ¼¾¼­´Â ±â¿Â º¯È­¿Í ÆøÇ³¿ì¿Í °°Àº ´Ù¾çÇÑ Á¶°Ç¿¡¼­ À̵¿ ·Îº¿(AMR)À» ÀÚÀ²ÀûÀ¸·Î ÀÛµ¿ÇÒ ¼ö ÀÖ½À´Ï´Ù. ·Îº¿Àº ¼¾¼­¸¦ »ç¿ëÇÏ¿© ÇöÁöÈ­, ¸ÅÇÎ, ¹°Ã¼ ºÐ·ù ¹× ¹°Ã¼ ÃßÀûÀ» À§ÇÑ ½Ç½Ã°£ 3D Áö°¢ µ¥ÀÌÅ͸¦ ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.

¶óƾ¾Æ¸Þ¸®Ä«°¡ Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ Àü¸Á

  • ¶óƾ¾Æ¸Þ¸®Ä«´Â ¿ïâÇÑ ½£À» °¡Áö°í ÀÖÀ¸¸ç ½ÅÈï °æÁ¦ ±¹°¡·Î ÀνĵǾî Å« È®´ë ¹× ¹ß±¼ÀÇ ±âȸ¸¦ Á¦°øÇÕ´Ï´Ù. ÀÌ Áö¿ªÀÇ ¿ø»ýÀû ¼ºÁú°ú LiDAR ±â¼úÀÌ °áÇյǾî, ÀÌ Áö¿ªÀº Á¶»çµÈ ½ÃÀå¿¡¼­ °ß½ÇÇÑ ¼ºÀåÀ» º¸¿©ÁÙ °ÍÀ¸·Î ±â´ëµÇ°í ÀÖ½À´Ï´Ù.
  • À¯¿£ ½Ä·®³ó¾÷±â°ü(FAO)¿¡ µû¸£¸é ¶óƾ¾Æ¸Þ¸®Ä«¿Í Ä«¸®ºêÇØ Áö¿ªÀÇ ÃÑ ¸éÀûÀÇ 49%°¡ ½£À¸·Î µ¤¿© ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀÇ »ï¸²¸éÀûÀº 8¾ï 9,100¸¸ Çퟸ£·Î ¼¼°è »ï¸²¸éÀûÀÇ ¾à 22%¸¦ Â÷ÁöÇÕ´Ï´Ù. ÀÌ Áö¿ª¿¡´Â ¼¼°è ¿ø»ý¸²ÀÇ 57%°¡ ÀÖÀ¸¸ç »ý¹°´Ù¾ç¼º º¸Àü¿¡ ÇʼöÀûÀÎ Áö¿ªÀÔ´Ï´Ù.
  • °Ô´Ù°¡ FAO¿¡ µû¸£¸é, »ê¸² ¸éÀûÀÇ 14%°¡ »ý»êÀûÀÎ »ê¸²À¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀÇ Áß¿äÇÑ »ê¸² ÀÚ¿øÀº LiDAR ±â¼úÀ» ÀÓ¾÷¿¡ äÅÃÇϱâ À§ÇÑ ±¤¹üÀ§ÇÑ Àü¸ÁÀ» âÃâÇϰí ÀÖ½À´Ï´Ù. LiDARÀÌ ÀåÂøµÈ µå·ÐÀ» ÀÌ·¯ÇÑ ½£ Áö¿ª »ó°ø¿¡¼­ »ç¿ëÇÏ¿© Àΰ£ Ȱµ¿ÀÇ ¿µÇâÀ» º¸¿©ÁÖ´Â 3D ¸ðµ¨À» ¸¸µé ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ LiDARÀº ³ª¹« µ¤°³¸¦ °üÅëÇÒ ¼ö Àֱ⠶§¹®¿¡ ÀÌ Áö¿ªÀÇ µÎ²¨¿î ½£À¸·Î µ¤ÀÎ Áö¿ª¿¡¼­ ¸Å¿ì À¯¿ëÇÕ´Ï´Ù.
  • ÀÓ¾÷¿¡ ´ëÇÑ ±â¼ú ¿ëµµ ¿Ü¿¡µµ ÀÌ Áö¿ªÀº ³óÁö¿¡µµ dzºÎÇÕ´Ï´Ù. FAO´Â ¶óƾ¾Æ¸Þ¸®Ä« Ä«¸®ºêÇØ Áö¿ªÀ» ¼¼°è ½Ä·® ¾Èº¸ÀÇ ±âµÕÀ¸·Î ÀÚ¸®¸Å±èÇϰí 2050³â±îÁö 100¾ï ¸íÀ» ±â¸£´Â µ¥ ÇÊ¿äÇÑ ³ó¾÷ ½Ä·® ½Ã½ºÅÛÀÇ º¯È­¸¦ ÃßÁøÇÏ´Â °ÍÀ» »ç¸íÀ¸·Î Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¾ß½ÉÀûÀÎ ¸ñÇ¥´Â Áö¿ª ³ó»ê¹° ¼öÃâ Áõ°¡¿Í ÇÔ²² ÀÌ ºÐ¾ßÀÇ ±â¼ú ä¿ëÀ» µÞ¹ÞħÇÒ °ÍÀ¸·Î ±â´ëµË´Ï´Ù.

LiDAR »ê¾÷ °³¿ä

LiDAR ½ÃÀåÀº ¸¹Àº Å©°í ÀÛÀº ±â¾÷µéÀÌ ½ÃÀå °æÀïÀ» ¹úÀ̰í Àֱ⠶§¹®¿¡ ´ÜÆíÈ­Çϰí ÀÖ½À´Ï´Ù. Á¦Ç°°ú ±â¼ú ¹ßÇ¥, Àü·«Àû ÆÄÆ®³Ê½Ê, Àμö, »ç¾÷ È®´ë, Çù¾÷ µîÀ» ÅëÇØ ÀÌ ±â¾÷µéÀº ½ÃÀå¿¡¼­ °æÀï·ÂÀ» ¾ò°íÀÚ ÇÕ´Ï´Ù. ½ÃÀåÀÇ ÁÖ¿ä ±â¾÷Àº Sick AG, Teledyne Optech, Quanergy Systems Inc, Velodyne LiDAR, 3D Laser Mapping Ltd, Denso Corporation µîÀÔ´Ï´Ù.

  • 2024³â 2¿ù-John Deere´Â Çí»ç°ï »êÇÏÀÇ Leica Geosystems¿Í Àü·«Àû ÆÄÆ®³Ê½ÊÀ» ¹ßÇ¥ÇÏ¿© Áß°ø¾÷ »ê¾÷ÀÇ µðÁöÅÐ º¯È¯ °¡¼ÓÈ­¸¦ Áö¿øÇÕ´Ï´Ù. Á¸µð¾î¿Í ¶óÀÌÄ«Áö¿À½Ã½ºÅÛÁîÀÇ Çù¾÷Àº ¾ç»çÀÇ °­Á¡À» Ȱ¿ëÇÏ¿© Àü ¼¼°è °Ç¼³ Àü¹®°¡µé¿¡°Ô »õ·Î¿î ±â¼ú°ú ¼­ºñ½º¸¦ Á¦°øÇÕ´Ï´Ù.
  • 2023³â 5¿ù-SICK AG´Â 4¸¸°³ ÀÌ»óÀÇ SICK ¼¾¼­¿¡¼­ ¾òÀº Ç¥ÁØÈ­µÈ Á¤º¸¸¦ Asset Administration Shells(AAS)¶ó´Â ÇüÅ·Π¼ÒºñÀÚ³ª ÆÄÆ®³Ê¿¡°Ô Á¦°øÇÑ´Ù°í ¹ßÇ¥Çß½À´Ï´Ù. SICKÀº »ê¾÷ µðÁöÅÐÈ­ÀÇ ÁøÀü¿¡ Å©°Ô ±â¿©ÇÒ ÀÇÁö¸¦ º¸¿©ÁÖ¾ú½À´Ï´Ù.

±âŸ ÇýÅà :

  • ¿¢¼¿ Çü½Ä ½ÃÀå ¿¹Ãø(ME) ½ÃÆ®
  • 3°³¿ù°£ÀÇ ¾Ö³Î¸®½ºÆ® ¼­Æ÷Æ®

¸ñÂ÷

Á¦1Àå ¼­·Ð

  • Á¶»çÀÇ ÀüÁ¦Á¶°Ç ¹× ½ÃÀå Á¤ÀÇ
  • Á¶»ç ¹üÀ§

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå °³¿ä
  • ¾÷°èÀÇ ¸Å·Âµµ-Porter's Five Forces ºÐ¼®
    • ½Å±Ô Âü°¡¾÷üÀÇ À§Çù
    • ±¸¸ÅÀÚÀÇ Çù»ó·Â
    • °ø±Þ±â¾÷ÀÇ Çù»ó·Â
    • ´ëüǰÀÇ À§Çù
    • °æÀï ±â¾÷°£ °æÀï °ü°è
  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • µå·ÐÀÇ ±Þ¼ÓÇÑ °³¹ß°ú ¿ëµµ È®´ë
    • ÀÚµ¿Â÷ »ê¾÷¿¡¼­ÀÇ Ã¤¿ë Áõ°¡
  • ½ÃÀåÀÇ °úÁ¦
    • LiDAR ½Ã½ºÅÛÀÇ °íºñ¿ë
  • ¾÷°èÀÇ ¹ë·ùüÀÎ
  • ±â¼ú ½º³À¼¦
    • ÃøÁ¤ ÇÁ·Î¼¼½º ¿É¼Ç
    • ·¹ÀÌÀú ¿É¼Ç
    • ºö ½ºÆ¼¾î¸µ ¿É¼Ç
    • ±¤°ËÃâ±â ¿É¼Ç
  • ½ÃÀå¿¡ ´ëÇÑ COVID-19ÀÇ ¿µÇâ

Á¦5Àå ½ÃÀå ¼¼ºÐÈ­

  • ¿ëµµº°
    • ·Îº¿ Â÷·®
    • ADAS
    • ȯ°æ
      • ÁöÇü
      • ¹Ù¶÷
      • ³ó¾÷ ¹× ÀÓ¾÷
    • °ø¾÷
  • À¯Çüº°
    • Ç×°ø(ÁöÇü ¹× ¼ö½É)
    • Áö»óÇü(À̵¿ ¹× Á¤Áö)
  • Áö¿ªº°
    • ºÏ¹Ì
    • À¯·´
    • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ¶óƾ¾Æ¸Þ¸®Ä«
    • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦6Àå °æÀï ±¸µµ

  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Leica Geosystems AG(Hexagon AB)
    • Sick AG
    • Trimble Inc.
    • Quanergy Systems Inc.
    • Faro Technologies Inc.
    • Teledyne Optech
    • Velodyne LiDAR Inc.
    • Topcon Corp.
    • RIEGL Laser Measurement Systems GmbH
    • Leosphere(Vaisala)
    • Waymo
    • RoboSense LiDAR
    • Denso Corporation
    • Innoviz Technologies Ltd
    • Neptec Technologies Corp.(Maxar)

Á¦7Àå ½ÃÀå Àü¸Á

AJY 25.02.12

The Global LiDAR Market size is estimated at USD 3.08 trillion in 2025, and is expected to reach USD 7.65 trillion by 2030, at a CAGR of 19.93% during the forecast period (2025-2030).

Global LiDAR - Market - IMG1

One of the primary factors augmenting the LiDAR market growth is the increasing use of LiDAR systems in UAVs, the use of LiDAR in engineering and construction applications, the use of LiDAR in geographical information systems (GIS) applications, the emergence of 4D LiDAR, and the loosening of regulations surrounding the use of commercial drones in various applications. The market's expansion is being held back by safety concerns around UAVs and autonomous vehicles, as well as the accessibility of affordable and lightweight photogrammetry devices.

Key Highlights

  • Globally, and especially in developing nations, the size and scope of engineering and civil construction activities have greatly increased to accommodate the growing population. All stages of building activities, from surveying and mapping to conducting project feasibility studies, call for an increasing amount of technology. LiDAR technologies can easily and accurately give a detailed survey of vast areas. Additionally, global positioning system-assisted laser scanners and extremely sensitive cameras assist engineers in creating designs that meet project criteria and accurate feasibility assessments. Many LiDAR service providers have expanded as a result of this.
  • In the oil and gas and mining sector, LiDAR technology allows scientists and mapping professionals to examine built and natural environments across a wide range of scales with greater accuracy, precision, and flexibility than ever before. The encouragement from the government in automation and the adoption of LiDAR in various government sector activities, like flood relief and management, are also driving the industry's growth. In India, the Transport Ministry mandated the use of LiDAR systems in surveying areas before constructing a new highway.
  • Drones, or unmanned aerial vehicles (UAV's), are witnessing growing adoption across many industries, owing to their low cost and vast array of applications. LiDAR drones were first developed as an instrument for studies on atmospheric composition, clouds, earth structures, and aerosols. They remain a powerful tool for climate observations around the world. Collecting this data, NOAA and other such research organizations operate these instruments to enhance understanding of climate change.
  • The growing technological developments in the automotive sector is the major driving factor of the LiDAR market. The companies are looking for an amalgamation of various technologies, and LiDAR technology might play a vital role.
  • High costs associated with the deployment of this technology are restraining the growth of this market. LiDAR systems are expected to become standard installations in autonomous drones and cars, expected to be deployed over the coming years. With fast-moving innovations in autonomous vehicle technologies and increasing support from the government, the early deployment of Level 5 autonomous vehicles is expected by the end of the forecast period. With the industry moving toward the complete autonomous range of vehicles, the dependence on LiDAR systems is growing.
  • The COVID-19 outbreak affected industries around the world. The automotive industry is one of the significant adopters of LiDAR. The outbreak has resulted in the shutdown of various production plants impacting the demand. Semiconductor materials scarcity has further aggravated the situation.

LiDAR Market Trends

Robotic Vehicles are among the Factors Driving the Market

  • This segment is considering using LiDAR technology in robotic cars, automotive guided vehicles (AGVs), uncrewed vehicles, and drones. ADAS (Advanced Driver Assist System) is an acronym for Advanced Driver Assist System. LiDAR is one of the most advanced technologies currently being used to develop self-driving cars and autonomous vehicles. LiDAR (Light Detection And Ranging) can be used by autonomous drones, robots, and vehicles for navigation, obstacle detection, and collision avoidance.
  • LiDAR enables self-driving vehicles, AGVs, and other drones to make precise judgments without human error, making them less susceptible to crashes. This has increased in recent years due to technological advancements and the relative cost reduction of LiDAR sensors. A self-driving car can see the world with a continuous 360-degree view thanks to LiDAR. It also allows for highly accurate depth information.
  • When mounted on an AGV, a LiDAR sensor sends out a series of laser pulses that measure the distance between objects and the vehicle. This compiled data creates a full 360° environmental map of the operational area. The resulting mapping allows the AGV to navigate the facility without additional infrastructure.
  • Using LiDAR in robotic vehicles entails using multiple LiDARs to map the vehicle's surroundings. The use of LiDAR is required for a high level of sensor redundancy to ensure the safety of its passengers. The proper development of fully autonomous or robotic vehicles for passengers is still in the works, and LiDAR is expected to play a significant role in these as well.
  • LiDAR for robotic navigation provides critical distance measurement information about the environment and the vehicle's position on objects. Rapidly expanding e-commerce and a greater emphasis on workplace safety are driving massive growth in the Autonomous Mobile Robot (AMR) and Automatic Guided Vehicle (AGV) markets. Such factors will drive up demand for LiDAR applications in robotic vehicles.
  • For example, RoboSense, a Smart LiDAR Sensor Systems provider, held a new product launch in November 2022, RS-LiDAR-E1 (E1), a flash solid-state LiDAR that sees 360° based on its in-house, custom-developed chips, and flash technology platform. E1 will help partners bridge the gap in smart driving perception and improve the all-scenario perception capability of automated and autonomous vehicles as a critical piece to realizing the core functions of autonomous driving.
  • Furthermore, mobile robots operating outside can rely on geolocation capabilities such as GPS, as well as sensing technologies such as Lidar, to determine where they are and where they are going. LiDAR sensors are classified as navigation or obstacle avoidance sensors. The demand for Robot vehicles is expected to increase as E-commerce sales increase due to their wide range of applications. The market for LiDARs for robotic vehicle applications will be fueled by an increase in E-commerce sales.
  • For instance, Velodyne Lidar Inc. announced in June 2022 that Boston Dynamics would use its lidar sensors in its robots as part of a multi-year agreement. According to the company, its Lidar sensors enable mobile robots (AMR) to operate autonomously in a variety of conditions, including changing temperatures and rainstorms. Robots can use their sensors to obtain real-time 3D perception data for localization, mapping, object classification, and object tracking.

Latin America is Expected to Hold Significant Market Share

  • Latin America has dense forest cover and can be identified as a developing economy, indicating significant expansion and excavation opportunities. Owing to the native nature of the region, coupled with LiDAR technology, the region is expected to witness solid growth in the studied market.
  • According to the Food and Agriculture Organization (FAO) of the United Nations, 49% of the total area of Latin America and the Caribbean is covered by forests. The region's forest cover includes 891 million hectares, representing approximately 22% of the global forest area. The region is home to 57% of the world's primary forests, which makes it vital for biodiversity and conservation.
  • Furthermore, according to FAO, 14% of the total forest area has been earmarked for productive functions. The region's significant forest resources create a wide-open prospect for the adoption of the Lidar technology for its adoption in forestry. LiDAR-equipped drones can be used over these forest areas to create 3D models that illustrate the impact of human activity. Furthermore, owing to the capacity of LiDAR to penetrate tree cover makes it exceptionally useful for the region's thick forest-covered area.
  • In addition to the applications of technology in forestry, the region is marked for its farming lands. FAO has titled Latin America and the Caribbean as the pillar for world food security with a mission of driving the necessary agri-food systems transformation to feed 10 billion people by 2050. Such ambitious goals, coupled with increasing regional agricultural exports, are expected to support the adoption of the technology in the sector.

LiDAR Industry Overview

The LiDAR Market is fragmented due to many large and small players churning the competition in the market. Through product and technology launches, strategic partnerships, acquisitions, expansion, and collaboration, these players try to gain a competitive edge in the market. Key players in the market are Sick AG, Teledyne Optech, Quanergy Systems Inc., Velodyne LiDAR, 3D Laser Mapping Ltd, Denso Corporation, etc.

  • February 2024 - John Deere announced a strategic partnership with Leica Geosystems, part of Hexagon, to assist in accelerating the digital transformation of the heavy construction industry. The collaboration between John Deere and Leica Geosystems would leverage the strengths of both companies to bring new technologies and services to construction professionals worldwide.
  • May 2023 - SICK AG announced that it would provide standardized information from over 40,000 SICK sensors in the form of Asset Administration Shells (AAS) to consumers and partners. SICK demonstrated its aspiration to contribute significantly to the advancement of industrial digitalization.

Additional Benefits:

  • The market estimate (ME) sheet in Excel format
  • 3 months of analyst support

TABLE OF CONTENTS

1 INTRODUCTION

  • 1.1 Study Assumptions and Market Definition
  • 1.2 Scope of the Study

2 RESEARCH METHODOLOGY

3 EXECUTIVE SUMMARY

4 MARKET INSIGHTS

  • 4.1 Market Overview
  • 4.2 Industry Attractiveness - Porter's Five Forces Analysis
    • 4.2.1 Threat of New Entrants
    • 4.2.2 Bargaining Power of Buyers
    • 4.2.3 Bargaining Power of Suppliers
    • 4.2.4 Threat of Substitutes
    • 4.2.5 Intensity of Competitive Rivalry
  • 4.3 Market Drivers
    • 4.3.1 Fast Paced Developments and Increasing Application of Drone
    • 4.3.2 Increasing Adoption in the Automotive Industry
  • 4.4 Market Challenges
    • 4.4.1 High Cost of The LiDAR Systems
  • 4.5 Industry Value Chain
  • 4.6 Technology Snapshot
    • 4.6.1 Measurement Process Options
    • 4.6.2 Laser Options
    • 4.6.3 Beam Steering Options
    • 4.6.4 Photodetector Options
  • 4.7 Impact of COVID-19 on the Market

5 MARKET SEGMENTATION

  • 5.1 Application
    • 5.1.1 Robotic Vehicles
    • 5.1.2 ADAS
    • 5.1.3 Environment
      • 5.1.3.1 Topography
      • 5.1.3.2 Wind
      • 5.1.3.3 Agriculture and Forestry
    • 5.1.4 Industrial
  • 5.2 Type
    • 5.2.1 Aerial (Topographic and Bathymetric)
    • 5.2.2 Terrestrial (Mobile and Static)
  • 5.3 Geography
    • 5.3.1 North America
    • 5.3.2 Europe
    • 5.3.3 Asia Pacific
    • 5.3.4 Latin America
    • 5.3.5 Middle East and Africa

6 COMPETITIVE LANDSCAPE

  • 6.1 Company Profiles
    • 6.1.1 Leica Geosystems AG (Hexagon AB)
    • 6.1.2 Sick AG
    • 6.1.3 Trimble Inc.
    • 6.1.4 Quanergy Systems Inc.
    • 6.1.5 Faro Technologies Inc.
    • 6.1.6 Teledyne Optech
    • 6.1.7 Velodyne LiDAR Inc.
    • 6.1.8 Topcon Corp.
    • 6.1.9 RIEGL Laser Measurement Systems GmbH
    • 6.1.10 Leosphere (Vaisala)
    • 6.1.11 Waymo
    • 6.1.12 RoboSense LiDAR
    • 6.1.13 Denso Corporation
    • 6.1.14 Innoviz Technologies Ltd
    • 6.1.15 Neptec Technologies Corp. (Maxar)

7 MARKET OUTLOOK

ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦