½ÃÀ庸°í¼­
»óǰÄÚµå
1637847

¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ¼Ò¸Å ºÐ¼® ½ÃÀå : Á¡À¯À² ºÐ¼®, »ê¾÷ µ¿Çâ, ¼ºÀå ¿¹Ãø(2025-2030³â)

Asia Pacific Retail Analytics - Market Share Analysis, Industry Trends & Statistics, Growth Forecasts (2025 - 2030)

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Mordor Intelligence | ÆäÀÌÁö Á¤º¸: ¿µ¹® | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ¼Ò¸Å ºÐ¼® ½ÃÀå ±Ô¸ð´Â 2025³â 106¾ï 2,000¸¸ ´Þ·¯, 2030³â 208¾ï 3,000¸¸ ´Þ·¯·Î ÃßÁ¤µÇ¸ç, ¿¹Ãø ±â°£(2025-2030³â)Áß CAGRÀº 14.43%¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

Asia Pacific Retail Analytics-Market-IMG1

ÁÖ¿ä ÇÏÀ̶óÀÌÆ®

  • ¼Ò¸Å¾÷ü°¡ »ç¹°ÀÎÅͳÝÀ» ÀÚÁÖ ÀÌ¿ëÇÏ°í ¾Ö³Î¸®Æ½½º µµ±¸¸¦ ½Å¼ÓÇÏ°Ô µµÀÔÇÔÀ¸·Î½á ½ÃÀåÀÌ ±Þ¼ÓÈ÷ È®´ëµÇ°í ÀÖ½À´Ï´Ù.
  • ¼Ò¸Å ºÐ¼®Àº Àç°í ¼öÁØ, °ø±Þ¸Á ¿òÁ÷ÀÓ, ¼ÒºñÀÚ ¼ö¿ä, ÆÇ¸Å µî¿¡ ´ëÇÑ ºÐ¼® µ¥ÀÌÅ͸¦ Á¦°øÇÏ¸ç ¸¶ÄÉÆÃ ¹× Á¶´Þ ÀÇ»ç °áÁ¤¿¡ ÇʼöÀûÀÔ´Ï´Ù. ¼Ò¸Å ºÐ¼®Àº ¼Ò¸Å »ç¾÷¿¡¼­ »ý¼ºµÈ µ¥ÀÌÅ͸¦ ºÐ¼®ÇÏ°í ¼öÀͼºÀ» ³ôÀÌ´Â ºñÁî´Ï½º ÀÇ»ç °áÁ¤À» ³»¸®´Â °ÍÀÔ´Ï´Ù. ¼ö±Þ¿¡ ´ëÇÑ µ¥ÀÌÅÍ ºÐ¼®Àº Á¶´Þ ¼öÁØ À¯Áö ¹× ¸¶ÄÉÆÃ ÀÇ»ç °áÁ¤¿¡ Àû¿ëµÉ ¼ö ÀÖ½À´Ï´Ù.
  • ¿©±â¿¡´Â ¼Ò¸Å¾÷ ¾÷¹« ÀýÂ÷, ÆÇ¸Å µ¿Çâ, ¼ÒºñÀÚ Çൿ, Àüü ¼º°ú¸¦ ÆÄ¾ÇÇÏ°í °³¼±Çϱâ À§ÇÑ ÅëÂû·Â Á¦°øµµ Æ÷ÇԵ˴ϴÙ. ¿À´Ã³¯ ¼Ò¸Å¾÷¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ±âÁØÀÌ ³ô±â ¶§¹®¿¡ ±â¾÷Àº ¿È´Ïä³Î¿¡ ¸Â´Â Á¦¾È, ½Ç¿ëÀûÀÎ ÀýÂ÷, »õ·Î¿î µ¿Çâ¿¡ ´ëÇÑ ½Å¼ÓÇÑ Á¶Á¤À¸·Î Áõ°¡ÇÏ´Â ¼ö¿ä¸¦ ÃæÁ·ÇØ¾ß ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¸ðµç Ȱµ¿¿¡´Â ¼Ò¸Å ºÐ¼®ÀÌ ÇÊ¿äÇÕ´Ï´Ù. Áß±¹, ÀϺ», Àεµ, ±âŸ ½ÅÈï ±¹°¡ µî¿¡¼­ ¼Ò¸ÅÁ¡Æ÷°¡ ´Ã¾î³²¿¡ µû¶ó ½ÃÀåÀÌ È®´ëµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
  • ¿¹¸¦ µé¸é, Reliance RetailÀº 2023³â 2¿ù, ÀÌ ³ª¶óÀÇ ¹Ìµå ÇÁ¸®¹Ì¾ö ÀÇ·ù ½ÃÀåÀ» ½Ã¾ß¿¡ ³Ö¾î ³»³â Gap¸¦ º¹¼ö Á¡Æ÷ ¿ÀÇÂÇÒ °èȹÀ» ¹ßÇ¥Çß½À´Ï´Ù. Reliance RetailÀº Áö³­ÇØ ¹Ì±¹ ijÁÖ¾ó¿þ¾î ºê·£µå GapÀÇ Àεµ ÆÇ¸Å±ÇÀ» ÃëµæÇß½À´Ï´Ù. ÀÌ ¼Ò¸Å¾÷ü´Â ³»³â Àüü 50°³ Á¡Æ÷ÀÇ ½Å±Ô ÃâÁ¡À» °èȹÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÃâÁ¡Àº ¼Ò¸Å¾÷¿ë ºÐ¼® ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ ³ô¾ÆÁú °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.
  • ¾Ö³Î¸®Æ½½º´Â ¼Ò¸Å ±â¾÷ÀÌ ´õ ³ªÀº ¸¶ÄÉÆÃ ÀÇ»ç °áÁ¤À» ³»¸®°í ºñÁî´Ï½º ÇÁ·Î¼¼½º¸¦ °³¼±ÇÏ°í °³¼±Çϰí ÃÖÀûÈ­ÇØ¾ß ÇÒ ¿µ¿ªÀ» ÆÄ¾ÇÇÏ¿© Àü¹ÝÀûÀÎ °í°´ °æÇèÀ» Á¦°øÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ÀÌ ºÐ¾ßÀÇ ºÐ¼® ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä´Â ¸ðµç ±¹°¡¿¡¼­ ¼Ò¸Å ¾÷°èÀÇ ±Þ¼ÓÇÑ È®´ë¿Í ÇÔ²² Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¿¹¸¦ µé¾î ÀϺ»ÀÇ 2023³â 2¿ù ¼Ò¸Å ¸ÅÃâ¾×Àº Àü³â µ¿¿ù ´ëºñ 6.6% Áõ°¡Çß°í, ½ÃÀå ¿¹»ó 5.8% Áõ°¡¸¦ ¿ôµ¹¾Æ 1¿ù °³Á¤Ä¡ 5% Áõ°¡·Î °¡¼ÓÇß½À´Ï´Ù. ¼Ò¸Å¾÷ ¸ÅÃâÀº 12°³¿ù ¿¬¼Ó Áõ°¡ÇßÀ¸¸ç 2021³â 5¿ù ÀÌÈÄ °¡Àå ºü¸¥ ¼Óµµ¸¦ ±â·ÏÇß½À´Ï´Ù.
  • ¶ÇÇÑ ¼Ò¸Å ºÎ¹®ÀÇ Industry 4.0 µµÀÔ È®´ë°¡ ½ÃÀå È®´ë¿¡ Å©°Ô ±â¿©Çϰí ÀÖ½À´Ï´Ù. ¼Ò¸Å ¾Ö³Î¸®Æ½½º ½ÃÀåÀº ½º¸¶Æ®Æù°ú ÀüÀÚ»ó°Å·¡ÀÇ ÀαⰡ ³ô¾ÆÁü¿¡ µû¶ó È®´ëµÇ°í ÀÖ½À´Ï´Ù. ¿¹Ãø ±â°£ µ¿¾È ¼Òµæ ¼öÁØ »ó½Â, ºòµ¥ÀÌÅÍ ¹× ¾Ö³Î¸®Æ½½º¿¡ ´ëÇÑ Á¤ºÎ ÁöÃâ, ÀÚµ¿È­µÈ ¼Ò¸Å ±â¹Ý ¼­ºñ½º¿¡ ´ëÇÑ ¼ö¿ä°¡ Áö¿ª ¼Ò¸Å ¾Ö³Î¸®Æ½½º ½ÃÀåÀ» ÀÚ±ØÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
  • ¼Ò¸Å ¾Ö³Î¸®Æ½½º ½ÃÀåÀÇ ¼ºÀåÀº ¼Ò¸Å ¾Ö³Î¸®Æ½½º Åø°ú °ü·ÃµÈ ¼³Ä¡, À¯Áöº¸¼ö, Å×½ºÆ®, ¶óÀ̼±½Ì ¹× ±âŸ ±â¼úÀû ÀΰǺñ¿¡ ÇÊ¿äÇÑ ÀÚº» ÁöÃâÀÌ ³ôÀº °ÍÀÌ Å« Á¦¾àÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ Á¶Á÷ÀÌ ¾Æ´Ñ ¼Ò¸Å ºÎ¹®Àº ±â¼ú¿¡ ´ëÇÑ Á¢±ÙÀÌ Á¦ÇѵǾî ÀÖÀ¸¸ç, ¿¹»êÀÌ ¾ö°ÝÇÏ´Ù´Â Á¡µµ ½ÃÀå¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â ¿äÀÎÀÔ´Ï´Ù.

¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ¼Ò¸Å ºÐ¼® ½ÃÀå µ¿Çâ

¼Ö·ç¼Ç ºÎ¹®ÀÌ ÁÖ¿ä ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹Ãø

  • ¼Ò¸Å ¾÷°è´Â °æÀïÀÌ Ä¡¿­ÇØÁö°í Àֱ⠶§¹®¿¡ ºñÁî´Ï½º ÇÁ·Î¼¼½º¸¦ ÃÖÀûÈ­ÇÏ°í °í°´ÀÇ ±â´ë¿¡ ºÎÀÀÇÏ´Â °ÍÀÌ Áß¿äÇÕ´Ï´Ù. ¸ðµç ´Ü°è¿¡´Â µ¥ÀÌÅÍ ºÐ¼® ¼Ö·ç¼ÇÀÇ µµÀÔÀÌ Æ÷ÇԵ˴ϴÙ. °í°´ È÷Æ® ¸ÊÇÎÀº ¿ÀÆÛ ¹× »óǰ ¹èÄ¡ ÃÖÀûÈ­¿¡µµ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. °Ô´Ù°¡ ¼Ò¸Å ¾÷°è¿¡¼­´Â Ŭ¶ó¿ìµå ¼­ºñ½ºÀÇ ÀÌ¿ëÀÌ È®´ëµÇ°í ÀÖ¾î ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ¼Ò¸Å ¾Ö³Î¸®Æ½½º ½ÃÀå¿¡µµ °ð ±âȸ°¡ ã¾Æ¿Ã °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.
  • ¶ÇÇÑ µ¥ÀÌÅÍ °ü¸® ¼Ö·ç¼ÇÀÌ ÀÌ Áö¿ªÀÇ ¼Ò¸Å ºÐ¼® ºÐ¾ß¸¦ Áö¹èÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¼Ò¸Å¾÷¿¡¼­ µ¥ÀÌÅ͸¦ °¡Àå ÀÚÁÖ »ç¿ëÇÏ´Â ¹æ¹ý Áß Çϳª´Â °³ÀÎÈ­µÈ ¸¶ÄÉÆÃÀÔ´Ï´Ù. ¼Ò¸Å¾÷ü°¡ µ¥ÀÌÅÍ °ü¸® Ãø¸é¿¡ ´õ ¸¹Àº °ü½ÉÀ» ±â¿ïÀÌ¸é ±× ³ë·ÂÀÌ Å©°Ô °³¼±µÉ ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, Á¦3ÀÚ Á¤º¸¿¡ Ÿ»ç µ¥ÀÌÅ͸¦ Ãß°¡ÇÏ¿© °í°´ Ÿ°ÙÀ» º¸´Ù Á¤È®ÇÏ°Ô ÇÊÅ͸µÇÒ ¼ö ÀÖ½À´Ï´Ù.
  • ¶ÇÇÑ µ¥ÀÌÅÍ °ü¸® ¼Ö·ç¼ÇÀÇ Á߿伺Àº ¼Ò¸Å ¹× ÀüÀÚ»ó°Å·¡ ºÐ¾ß¿¡¼­µµ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ±â¼úÀÇ ¹ß´Þ°ú dzºÎÇÑ Á¤º¸¸¦ ÅëÇØ ±â¾÷Àº µ¥ÀÌÅ͸¦ Ȱ¿ëÇÏ¿© ¾÷¹«¸¦ °­È­ÇÏ°í ´õ ³ªÀº °í°´ ¼­ºñ½º¸¦ Á¦°øÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ´õ ³ªÀº µ¥ÀÌÅÍ °ü¸®´Â ±×·¸Áö ¾ÊÀ¸¸é ¾öû³ª°Ô °ü¸®ÇÒ ¼ö ¾ø´Â µ¥ÀÌÅÍ ¼¼Æ®¸¦ ÅëÇÕÇÏ°í ±¸Á¶È­ÇÔÀ¸·Î½á Àüü ¼Ò¸Å ÇÁ·Î¼¼½ºÀÇ °¡½Ã¼ºÀ» ³ôÀÔ´Ï´Ù.
  • ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ¼Ò¸Å ºÐ¼® ¾÷°è¸¦ °ßÀÎÇÏ´Â ¿äÀÎ Áß Çϳª´Â µ¥ÀÌÅÍ ºÐ¼® ¼Ö·ç¼ÇÀÔ´Ï´Ù. µ¥ÀÌÅÍ ¾Ö³Î¸®Æ½½º´Â ¼Ò¸Å¾÷ÀÌ ÇÁ·Î¼¼½º¸¦ °£¼ÒÈ­ÇÏ°í °í°´ °æÇèÀ» Çâ»ó½ÃŰ°í ¸ÅÃâÀ» ´Ã¸± ¼ö ÀÖ´Â °­·ÂÇÑ µµ±¸¸¦ Á¦°øÇÏ´Â ¼Ò¸Å ºÎ¹®ÀÇ °ÔÀÓ Ã¼ÀÎÀú ±â¼ú·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ¼Ò¸Å¾÷ü´Â µ¥ÀÌÅÍ ºÐ¼®À» Ȱ¿ëÇÏ¿© ±¸¸Å ³»¿ª, ºê¶ó¿ì¡ Çൿ, ¼Ò¼È ¹Ìµð¾î »ó´ã µîÀÇ °í°´ µ¥ÀÌÅ͸¦ ºÐ¼®ÇÏ¿© °³Àο¡ ¸Â´Â Ãßõ »óǰ, ¿ÀÆÛ, ÇÁ·Î¸ð¼ÇÀ» ÀÛ¼ºÇÒ ¼ö ÀÖ½À´Ï´Ù.
  • ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ¼Ò¸Å ºÎ¹®Àº ²÷ÀÓ¾øÀÌ º¯È­Çϰí ÀÖÀ¸¸ç µ¥ÀÌÅÍ ºÐ¼®Àº ¼Ò¸ÅÀÇ ¹Ì·¡ ¹ßÀü¿¡ Å©°Ô ¿µÇâÀ» ¹ÌĨ´Ï´Ù. ¶ÇÇÑ ¼Ò¸Å¾÷¿¡¼­ÀÇ µðÁöÅÐÈ­ÀÇ ÁøÀü°ú ÇÔ²² ¼Ò¸Å ¸ÅÃâÀÇ ¼ºÀåÀº ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ½ÅÈï±¹ ¼Ò¸Å ±â¾÷¿¡¼­ ¼Ò¸Å ºÐ¼® ¼Ö·ç¼ÇÀÇ Ã¤¿ëÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î Àεµ ¼Ò¸Å¾÷ Çùȸ(RAI)ÀÇ µ¥ÀÌÅÍ¿¡ µû¸£¸é 2021³â 2¿ùºÎÅÍ 2022³â 2¿ù±îÁö ¼Ò¸Å ¾÷°è¿¡¼­ Àεµ Àü¿ªÀÇ ¸ÅÃâ ¼ºÀå·üÀº 10%¿´½À´Ï´Ù. ¸¶Âù°¡Áö·Î 2021³â 2¿ùºÎÅÍ 2022³â 2¿ù±îÁö ºÏÀεµ ¸ÅÃâ ¼ºÀå·üÀº 17%, ¼­Àεµ ¸ÅÃâ ¼ºÀå·üÀº 16%¿´½À´Ï´Ù.

ÀϺ»Àº ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ¼Ò¸Å ¾Ö³Î¸®Æ½½º ½ÃÀå¿¡¼­ Å« °ßÀοªÀÌ µÉ Àü¸Á

  • ÀϺ»ÀÇ ¸®Å×ÀÏ ¾Ö³Î¸®Æ½½º ½ÃÀåÀº ¼Ò¸Å¾÷¿¡¼­ÀÇ µ¥ÀÌÅÍ ¾Ö³Î¸®Æ½½º ¼ö¿ä Áõ°¡¿Í ÇÔ²² ¼Ò¸Å¾÷ÀÇ ¸ÅÃâ Áõ°¡¿Í ±â¼úÀû Áøº¸·Î ÇâÈÄ ¼ö³â°£ ´ëÆøÀûÀÎ ¼ºÀåÀ» ÀÌ·ê °ÍÀ¸·Î ºÐ¼®µÇ°í ÀÖ½À´Ï´Ù. °Ô´Ù°¡ ±¹³» ¼Ò¸Å ºÎ¹®¿¡¼­ÀÇ µðÁöÅÐ º¯ÇõÀÇ ÁøÀüÀº ¾ÕÀ¸·Î ¼ö³â°£ ¼Ò¸Å ¾Ö³Î¸®Æ½½º ¼Ö·ç¼ÇÀÇ µµÀÔ¿¡ Å« ¼ºÀå ±âȸ¸¦ °¡Á®¿Ô½À´Ï´Ù.
  • ¶ÇÇÑ ¼Ò¸Å ºÐ¼®Àº ¸¶ÄÉÆÃ Àü·«À» Å©°Ô Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ÇöÀç ¹× °ú°Å °í°´ÀÇ À§Ä¡, ¿¬·É, ¼±È£µµ, ±¸¸Å ÆÐÅÏ ¹× ±âŸ Áß¿äÇÑ ¿ä¼Ò¿¡ ´ëÇØ ¼öÁýÇÑ Á¤º¸¸¦ Ȱ¿ëÇÏ¿© ÀÌ»óÀûÀÎ °í°´À» ÆÄ¾ÇÇÏ¿© °í°´ Ÿ°ÙÆÃÀ» Áö¿øÇÒ ¼ö ÀÖ½À´Ï´Ù. µ¥ÀÌÅÍ °ü¸®°¡ °³¼±µÇ¸é µ¥ÀÌÅÍÀÇ ÀáÀç·ÂÀ» ±Ø´ëÈ­ÇÏ°í ´Ù¾çÇÑ Ãø¸é¿¡¼­ ¼Ò¸Å¾÷ ¾÷¹«¸¦ °³¼±ÇÏ°í ¼Ò¸Å¾÷üÀÇ ÀüÀÚ»ó°Å·¡ »çÀÌÆ®ÀÇ ±â´ÉÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. µû¶ó¼­ ¿¹Ãø ±â°£ µ¿¾È ÀϺ»¿¡¼­ ¼Ò¸Å ºÐ¼® ¼Ö·ç¼Ç ¼ö¿ä°¡ ³ô¾ÆÁý´Ï´Ù.
  • ÇâÈÄ, ½Ç½Ã°£ ºÐ¼®, ÀΰøÁö´É, ¸Ó½Å·¯´× µîÀÇ ¼Ö·ç¼ÇÀÌ ´õ¿í Áß¿äÇØÁú °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. À̸¦ ÅëÇØ ¼Ò¸Å¾÷ü°¡ ¸ÅÃâÀ» ´Ã¸®°í ¸¶ÄÉÆÃ °èȹÀ» °£¼ÒÈ­ÇÏ°í °í°´¿¡°Ô ¿øÈ°ÇÑ °æÇèÀ» Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼Ö·ç¼ÇÀº µ¥ÀÌÅÍ ºÐ¼® ¼Ö·ç¼ÇÀÇ ÀϺηΠ¼Ò¸Å ºñÁî´Ï½º¿¡¼­ ´õ ÀÚÁÖ »ç¿ëµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
  • °Ô´Ù°¡ ÆíÀÇÁ¡°ú ½´ÆÛ¸¶ÄÏ µî ¼Ò¸Å¾÷ü¿Í Á¶Á÷ÀÌ ÀϺ» ¼Ò¸Å ¾÷°èÀÇ ¼Ò¸Å ¸ÅÃâ Áõ°¡¸¦ ¹è°æÀ¸·Î ¼Ò¸Å ¾Ö³Î¸®Æ½½º ¼Ö·ç¼ÇÀ» µµÀÔÇϱ⠶§¹®¿¡ ¼ö¿ä°¡ ±Þ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¿¹¸¦ µé¾î °æÁ¦»ê¾÷¼ºÀÇ µ¥ÀÌÅÍ¿¡ µû¸£¸é ÀϺ» ¼Ò¸Å ¾÷°èÀÇ ¸ÅÃâ¾×Àº 150Á¶¿£(103Á¶5,000¾ï ´Þ·¯)À» ³Ñ¾î, ±× Áß ½´ÆÛ¸¶ÄÏÀÌ ´Üµ¶ Á¡Æ÷ À¯ÇüÀ¸·Î¼­ 15Á¶1,500¾ï¿£(10Á¶4,500¾ï ´Þ·¯)ÀÇ ÃÖ´ë Á¡À¯À²À» Â÷ÁöÇϰí ÀÖ½À´Ï´Ù. ÀÌ¾î ÆíÀÇÁ¡ÀÌ 12Á¶ 2,000¾ï¿£(8Á¶ 4,100¾ï ´Þ·¯)À» ÆÇ¸ÅÇϰí ÀÖ½À´Ï´Ù.

¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ¼Ò¸Å ºÐ¼® ¾÷°è °³¿ä

¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ¼Ò¸Å ÀÚµ¿È­ ½ÃÀåÀº ´Ù¼öÀÇ ´ë±â¾÷µéÀÌ ¾÷°è¸¦ Áö¹èÇϰí ÀÖÀ¸¸ç, ¹ÝÅëÇÕÀûÀÎ ¾ç»óÀ» º¸À̰í ÀÖ½À´Ï´Ù. ÀÌ ½ÃÀåÀÇ ÁÖ¿ä ÁøÃâ±â¾÷¿¡´Â Oracle, IBM, SAP SE, Zoho, Adobe Systems Incorporated µîÀÌ Æ÷ÇԵ˴ϴÙ. ÀÌ·¯ÇÑ ±â¾÷µéÀº Àμö, Á¦Ç° ÅõÀÔ, Á¦ÈÞ µî ´Ù¾çÇÑ Àü·«Àû ÀÌ´Ï¼ÅÆ¼ºê¸¦ ÅëÇØ ½ÃÀå¿¡¼­ÀÇ Á¸Àç°¨À» Áö¼ÓÀûÀ¸·Î ³ôÀ̰í ÀÖÀ¸¸ç, ½ÃÀå ¼ºÀå¿¡ Å©°Ô ±â¿©Çϰí ÀÖ½À´Ï´Ù. ÀÌ ºÐ¾ßÀÇ ÃÖ±Ù µ¿ÇâÀ» ¸î °¡Áö ¼Ò°³ÇϰڽÀ´Ï´Ù.

2022³â 11¿ù, QlikÀº "Qlik Cloud Data Integration"À¸·Î ¾Ë·ÁÁø Çõ½ÅÀûÀÎ Á¦Ç°À» ¹ßÇ¥Çß½À´Ï´Ù. ÀÌ eiPaaS(Enterprise Integration Platform as a Service)´Â ±â¾÷ µ¥ÀÌÅÍ Àü·«À» °­È­Çϵµ·Ï ¼³°èµÇ¾ú½À´Ï´Ù. ÀÌ´Â ¸ðµç ±â¾÷ ¿ëµµ°ú µ¥ÀÌÅÍ ¼Ò½º¸¦ Ŭ¶ó¿ìµå¿¡ ¿¬°áÇÏ´Â ½Ç½Ã°£ µ¥ÀÌÅÍ ÅëÇÕ ÆÐºê¸¯À» ±¸ÃàÇÔÀ¸·Î½á ½ÇÇöµË´Ï´Ù. Ŭ¶ó¿ìµå ±â´ÉÀ» Ȱ¿ëÇÏ°í ´Ù¾çÇÑ µ¥ÀÌÅÍ ¼Ò½º, ´ë»ó ¹× ´ë»ó °£ÀÇ ½Ç½Ã°£ µ¥ÀÌÅÍ ¿¬°áÀ» ±¸ÃàÇÔÀ¸·Î½á Qlik Cloud Data IntegrationÀº ±â¾÷ÀÇ ¸ðµç ±¸¼º¿øÀÌ ÀڽۨÀ» °®°í µ¥ÀÌÅÍ Áß½ÉÀÇ ÀÇ»ç °áÁ¤À» ³»¸± ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù.

2022³â 3¿ù, À¯¸íÇÑ ¿£ÅÍÇÁ¶óÀÌÁî µ¥ÀÌÅÍ °ü¸® °ø±Þ¾÷üÀÎ Infomatica´Â 'Intelligent Data Management Cloud'(IDMC)ÀÇ Ã¹ ¹øÂ° ¼Ò¸Å¾÷¿ë ¹öÀüÀ» ¹ßÇ¥Çß½À´Ï´Ù. Intelligent Data Management Cloud for Retail¡±·Î ¸í¸íµÈ ÀÌ Àü¹® Ç÷§ÆûÀº InformaticaÀÇ ¸Ó½Å·¯´× ±â´ÉÀ» °®Ãá µµ±¸¸¦ Ȱ¿ëÇÏ¿© ºÐ¼® ¹× AI ¿ëµµ¿¡¼­ »ç¿ëÇÏ´Â µ¥ÀÌÅ͸¦ īŻ·Î±×È­, ¼öÁý, ÅëÇÕ ¹× ÁغñÇÏ´Â µ¥ ¼Ò¸Å¾÷ü¸¦ Áö¿øÇÕ´Ï´Ù. ÀÌ ¸ÂÃãÇü ¼Ö·ç¼ÇÀº ¼Ò¸Å¾÷ ƯÀ¯ÀÇ µ¥ÀÌÅÍ °ü¸® ¿ä±¸¸¦ ÇØ°áÇÏ°í ±â´ÉÀ» ´õ¿í °­È­ÇÕ´Ï´Ù.

±âŸ ÇýÅÃ

  • ¿¢¼¿ Çü½Ä ½ÃÀå ¿¹Ãø(ME) ½ÃÆ®
  • 3°³¿ù°£ÀÇ ¾Ö³Î¸®½ºÆ® ¼­Æ÷Æ®

¸ñÂ÷

Á¦1Àå ¼­·Ð

  • Á¶»çÀÇ ÀüÁ¦Á¶°Ç°ú ½ÃÀå Á¤ÀÇ
  • Á¶»ç ¹üÀ§

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå °³¿ä
  • ¾÷°èÀÇ ¸Å·Â Porter's Five Forces ºÐ¼®
    • ±¸¸ÅÀÚÀÇ Çù»ó·Â
    • °ø±Þ±â¾÷ÀÇ Çù»ó·Â
    • ½Å±Ô Âü°¡¾÷üÀÇ À§Çù
    • ´ëüǰÀÇ À§Çù
    • ±¸¸ÅÀÚÀÇ Çù»ó·Â
  • »ê¾÷ ¹ë·ùüÀÎ ºÐ¼®
  • ½ÃÀå¿¡ ´ëÇÑ COVID-19ÀÇ ¿µÇâ Æò°¡

Á¦5Àå ½ÃÀå ¿ªÇÐ

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • ¿¹Ãø ºÐ¼® Áß½ÃÀÇ °íÁ¶
    • µ¥ÀÌÅÍ·®ÀÇ Áö¼ÓÀû Áõ°¡
    • ¸ÅÃâ ¿¹Ãø¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ½ÅÈï Áö¿ª¿¡¼­ÀÇ ÀϹÝÀûÀÎ Àνİú Àü¹® Áö½ÄÀÇ ºÎÁ·
    • Ç¥ÁØÈ­¿Í ÅëÇÕ ¹®Á¦

Á¦6Àå ½ÃÀå ¼¼ºÐÈ­

  • Àü°³ ¸ðµåº°
    • ¿ÂÇÁ·¹¹Ì½º
    • ¿Âµð¸Çµå
  • À¯Çüº°
    • ¼Ö·ç¼Ç(ºÐ¼®, ½Ã°¢È­ Åø, µ¥ÀÌÅÍ °ü¸® µî)
    • ¼­ºñ½º(ÅëÇÕ, Áö¿ø ¹× ÄÁ¼³ÆÃ)
  • ¸ðµâ À¯Çüº°
    • Àü·« ¹× °èȹ(¸ÅÅ©·Î µ¿Çâ, KPI, °¡Ä¡ ºÐ¼®)
    • ¸¶ÄÉÆÃ(°¡°Ý ¼³Á¤, ·Î¿­Æ¼, ºÎ¹® ºÐ¼®)
    • À繫°ü¸®(ȸ°è°ü¸®)
    • Á¡Æ÷ ¿ÀÆÛ·¹À̼Ç(ºÎÁ¤ °ËÁö, ³ëµ¿·Â ºÐ¼®)
    • ¸Óõ´ÙÀÌ¡(±¸»ö ÃÖÀûÈ­, ¼îÆÛ ÆÐ½º ºÐ¼®)
    • °ø±Þ¸Á °ü¸®(Àç°í, º¥´õ, ¼ö±Þ ¸ðµ¨¸µ)
    • ±âŸ ¸ðµâ À¯Çü
  • ºñÁî´Ï½º À¯Çüº°
    • Áß¼Ò±â¾÷
    • ´ë±Ô¸ð Á¶Á÷
  • Áö¿ªº°
    • Áß±¹
    • Àεµ
    • ÀϺ»
    • Çѱ¹

Á¦7Àå °æÀï ±¸µµ

  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • SAP SE
    • Oracle Corporation
    • Qlik Technologies, Inc.
    • Zoho Corporation
    • IBM Corporation
    • Retail Next, Inc.
    • Alteryx, Inc.
    • Tableau Software, Inc.
    • Adobe Systems Incorporated
    • Microstrategy, Inc.
    • Prevedere Software, Inc.
    • Targit
    • Pentaho Corporation
    • ZAP Business Intelligence
    • Fuzzy Logix

Á¦8Àå ÅõÀÚ ºÐ¼®

Á¦9Àå ½ÃÀå ±âȸ¿Í ¾ÕÀ¸·ÎÀÇ µ¿Çâ

JHS 25.02.12

The Asia Pacific Retail Analytics Market size is estimated at USD 10.62 billion in 2025, and is expected to reach USD 20.83 billion by 2030, at a CAGR of 14.43% during the forecast period (2025-2030).

Asia Pacific Retail Analytics - Market - IMG1

Key Highlights

  • The market is expanding quickly due to retailers using the Internet of Things more frequently and adopting analytics tools faster.
  • Retail analytics provides analytical data on inventory levels, supply chain movement, consumer demand, sales, etc., essential for marketing and procurement decisions. Retail analytics is the analysis of data generated by retail operations to make business decisions that drive profitability. Data analytics on supply and demand can be applied to maintain procurement levels and make marketing decisions.
  • This includes offering insights to comprehend and improve the retail business's operational procedures, sales trends, consumer behavior, and overall performance. Because of consumers' high standards for retail today, companies must satisfy these growing demands with tailored omnichannel offers, practical procedures, and prompt adjustments to emerging trends. All of these activities require retail analytics. The market is expected to expand as more retail establishments open in countries such as China, Japan, India, and other developing nations.
  • For instance, Reliance Retail announced in February 2023 that it planned to open multiple Gap stores next year with an eye toward the country's mid-premium apparel market. Reliance Retail acquired the rights to sell American casual wear brand Gap in India last year. The retailer plans to open 50 new locations overall in the upcoming year. The opening of such stores will increase demand for retail analytical solutions.
  • Analytics can help retailers make better marketing decisions, improve business processes, and provide better overall customer experiences by identifying areas for improvement and optimization. The demand for analytical solutions in the sector is anticipated to increase with the rapid expansion of the retail industry across all countries. For instance, retail sales in Japan rose by 6.6% YoY in February 2023, exceeding market expectations of 5.8% and accelerating from a revised 5% growth in January. Retail trade increased for the 12th month, running the fastest since May 2021.
  • Additionally, the retail sector's growing adoption of Industry 4.0 has significantly aided the market's expansion. The market for retail analytics is expanding due to the rising popularity of smartphones and e-commerce. During the forecast period, it is also anticipated that increasing income levels, government spending on big data and analytics, and demand for automated retail-based services will stimulate the regional retail analytics market.
  • Retail analytics market growth is significantly constrained by the high capital expenditures required for installation, maintenance, testing, licensing, and other technical labor costs associated with retail analytics tools. Another factor impacting the market is the unorganized retail sectors' limited access to technology and tight budgets.

APAC Retail Analytics Market Trends

Solutions Segment is Anticipated to Hold Major Market Share

  • The retail industry is becoming more competitive, so optimizing business processes and satisfying customer expectations is crucial. Every step includes the implementation of data analytical solutions. Customer heat mapping can also be used to optimize offers and product placement. Additionally, the retail industry's growing use of cloud services will soon open up opportunities in the Asia Pacific retail analytics market.
  • Moreover, data management solutions are anticipated to dominate the region's retail analytic sector. One of the ways data is used in retail most frequently is for personalized marketing. If retailers focused more on the management side of data, their efforts could be significantly improved. For instance, adding data from third-party sources to their first-party information can help them target customers more precisely.
  • Furthermore, the importance of data management solutions has grown within the retail and e-commerce sectors. Businesses can use data to enhance operations and provide better customer service as a result of the development of technology and the abundance of information now at their disposal. Better data management increases visibility across retail processes by compiling and structuring otherwise enormous, unmanageable data sets.
  • One of the factors propelling the Asia-Pacific retail analytic industry is data analytical solutions. Data analytics has emerged as a game-changing technology in the retail sector that gives retailers strong tools to streamline their processes, enhance customer experiences, and boost sales. Retailers can use data analytics to create individualized recommendations, offers, and promotions by analyzing customer data such as purchase history, browsing behavior, and social media interactions.
  • The retail sector in Asia-Pacific is constantly changing, and data analytics significantly impacts how retail will develop in the future. Moreover, the growth in retail sales coupled with increasing digitization in the retail sector is driving the adoption of retail analytics solutions among retail businesses in the emerging countries in Asia Pacific. For instance, according to the data from the Retailers Association of India (RAI), Pan India sales growth in the retail industry from February 2021 to February 2022 was 10%. Similarly, the sales growth in North India and Western India was 17% and 16% from February 2021 to February 2022.

Japan is Expected to Witness Significant Traction in APAC Retail Analytics Market

  • The retail analytics market in Japan is analyzed to witness substantial growth in the coming years owing to the growth in retail sales and technological advancements in the retail sector coupled with the growing demand for data analytics in retail businesses. Moreover, the growing digital transformation in the country's retail sector is further offering substantial growth opportunities for the adoption of retail analytics solutions in the coming years.
  • Additionally, retail analytics can significantly enhance marketing strategies. It can assist in customer targeting by identifying the ideal customer using information gathered on the location, age, preferences, buying patterns, and other significant factors of current and previous customers. Better data management will unlock data's full potential, improving retail operations on many fronts and enhancing the functionality of retailers' e-commerce sites. Thus propelling the demand for retail analytics solutions in Japan over the forecast period.
  • Furthermore, it is anticipated that in the future, solutions like real-time analytics, artificial intelligence, and machine learning will become even more significant. These can aid retailers in increasing sales, streamlining their marketing plans, and giving customers a seamless experience. These solutions are anticipated to be used more frequently in retail businesses as part of data analytics solutions.
  • Moreover, the demand is expected to grow at a rapid pace as more retail businesses and organizations, such as convenience stores, supermarkets, etc., adopt retail analytics solutions owing to growth in retail sales in the Japanese retail industry. For instance, according to the data from METI (Japan), the sales value of the retail industry in Japan exceeded JPY 150 trillion (USD 103.5 Trillion), out of which supermarkets accounted for the largest share of JPY 15.15 trillion (USD 10.45 trillion) as a standalone store type. Convenience stores followed as the second strongest retail type, with the sales of goods and services generating JPY 12.2 trillion (USD 8.41 trillion).

APAC Retail Analytics Industry Overview

The Asia Pacific Retail Automation Market exhibits semiconsolidated, with several major players dominating the industry. Key participants in this market include Oracle, IBM, SAP SE, Zoho, and Adobe Systems Incorporated, among others. These companies are continuously fortifying their market presence through various strategic initiatives, including acquisitions, product launches, and partnerships, which significantly contribute to the market's growth. Here are some recent developments within this sector:

In November 2022, Qlik introduced a transformative product known as "Qlik Cloud Data Integration." This Enterprise Integration Platform as a Service (eiPaaS) offering is designed to empower enterprise data strategies. It achieves this by creating a real-time data integration fabric connecting all enterprise applications and data sources to the cloud. By harnessing the capabilities of the cloud and establishing real-time data connections between diverse data sources, targets, and destinations, Qlik Cloud Data Integration enables all members of the enterprise to make data-driven decisions with confidence.

In March 2022, Informatica, a renowned enterprise data management vendor, unveiled the first retail-specific version of its "Intelligent Data Management Cloud" (IDMC). This specialized platform, known as "Intelligent Data Management Cloud for Retail," leverages Informatica's suite of machine learning-powered tools to assist retailers in cataloging, ingesting, integrating, and preparing data for use in analytical and AI applications. This tailored solution caters to the unique data management needs of the retail sector, further enhancing its capabilities.

Additional Benefits:

  • The market estimate (ME) sheet in Excel format
  • 3 months of analyst support

TABLE OF CONTENTS

1 INTRODUCTION

  • 1.1 Study Assumptions and Market Definition
  • 1.2 Scope of the Study

2 RESEARCH METHODOLOGY

3 EXECUTIVE SUMMARY

4 MARKET INSIGHTS

  • 4.1 Market Overview
  • 4.2 Industry Attractiveness Porter's Five Forces Analysis
    • 4.2.1 Bargaining power of Buyers
    • 4.2.2 Bargaining power of Suppliers
    • 4.2.3 Threat of New Entrants
    • 4.2.4 Threat of Substitute Products
    • 4.2.5 Bargaining power of Buyers
  • 4.3 Industry Value Chain Analysis
  • 4.4 Assessment of COVID-19 impact on the Market

5 MARKET DYNAMICS

  • 5.1 Market Drivers
    • 5.1.1 Increased Emphasis on Predictive Analysis
    • 5.1.2 Sustained increase in volume of data
    • 5.1.3 Growing demand for sales forecasting
  • 5.2 Market Restraints
    • 5.2.1 Lack of general awareness and expertise in emerging regions
    • 5.2.2 Standardization and Integration issues

6 MARKET SEGMENTATION

  • 6.1 By Mode of Deployment
    • 6.1.1 On-Premise
    • 6.1.2 On-Demand
  • 6.2 By Type
    • 6.2.1 Solutions (Analytics, Visualization Tools, Data Management, etc.)
    • 6.2.2 Services (Integration, Support & Consulting)
  • 6.3 By Module Type
    • 6.3.1 Strategy & Planning (Macro Trends, KPI, Value Analysis)
    • 6.3.2 Marketing (Pricing, Loyalty and Segment Analysis)
    • 6.3.3 Financial Management (Accounts Management)
    • 6.3.4 Store Operations (Fraud Detection, Workforce Analytics)
    • 6.3.5 Merchandising (Assortment Optimization, Shopper Path Analytics)
    • 6.3.6 Supply Chain Management (Inventory, Vendor and Supply-Demand Modelling)
    • 6.3.7 Other Module Types
  • 6.4 By Business Type
    • 6.4.1 Small and Medium Enterprises
    • 6.4.2 Large-scale Organizations
  • 6.5 Geography
    • 6.5.1 China
    • 6.5.2 India
    • 6.5.3 Japan
    • 6.5.4 South Korea

7 COMPETITIVE LANDSCAPE

  • 7.1 Company Profiles
    • 7.1.1 SAP SE
    • 7.1.2 Oracle Corporation
    • 7.1.3 Qlik Technologies, Inc.
    • 7.1.4 Zoho Corporation
    • 7.1.5 IBM Corporation
    • 7.1.6 Retail Next, Inc.
    • 7.1.7 Alteryx, Inc.
    • 7.1.8 Tableau Software, Inc.
    • 7.1.9 Adobe Systems Incorporated
    • 7.1.10 Microstrategy, Inc.
    • 7.1.11 Prevedere Software, Inc.
    • 7.1.12 Targit
    • 7.1.13 Pentaho Corporation
    • 7.1.14 ZAP Business Intelligence
    • 7.1.15 Fuzzy Logix

8 INVESTMENT ANALYSIS

9 MARKET OPPORTUNITIES AND FUTURE TRENDS

ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦