½ÃÀ庸°í¼­
»óǰÄÚµå
1799622

¼¼°èÀÇ ½Å¾çÀÚ ½Ã½ºÅÛ¿ë ÃÊÀú¼Õ½Ç, °íÁ¤¹Ð Ä¿ÆÐ½ÃÅÍ, ÀúÇ×±â ¹× ÀδöÅÍ ½ÃÀå : ±â¼ú, ±âȸ(2025-2030³â)

Ultra-Low Loss and Precision Capacitors, Resistors and Inductors For Emerging Quantum Systems: World Markets, Technologies and Opportunities: 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Paumanok Publications, Inc. | ÆäÀÌÁö Á¤º¸: ¿µ¹® 133 Pages; 17 Tables and Graphs | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

ÁÖ¿ä ¿ä¾à

ÀÌ º¸°í¼­´Â ¾çÀÚ ÄÄÇ»ÆÃ ¿ëµµ¸¦ À§ÇØ Æ¯º°È÷ ¼³°èµÈ ¼öµ¿ ÀüÀÚ ºÎǰ ½ÃÀåÀ» Á¶»çÇßÀ¸¸ç, ºÐ¼®Çϰí, QPU ¹× ¾çÀÚ ½Ã½ºÅÛ ÀÎÇÁ¶ó¿¡¼­ Ä¿ÆÐ½ÃÅÍ, ÀúÇ×±â, ÀδöÅÍÀÇ Æ¯¼ö ¿ä±¸ »çÇ×, ½Å±â¼ú ¹× »ó±â¿¡ ´ëÇÑ Á¤º¸¸¦ Á¦°øÇÕ´Ï´Ù.

¼³¹®Á¶»ç ÇÏÀ̶óÀÌÆ®

ȹ±âÀûÀÎ ½ÃÀå ºÐ¼®

  • ¾çÀÚ ÄÄÇ»ÆÃ¿¡¼­ ¼öµ¿ ºÎǰ¿¡ ƯȭµÈ ÃÖÃÊÀÇ Á¾ÇÕÀû Á¶»ç
  • ÃÊÀú¼Õ½Ç À¯Àüü Àç·á ¹× Á¤¹Ð Á¦Á¶ ¿ä°ÇÀÇ ºÐ¼®
  • ±ØÀú¿Â µ¿ÀÛ Á¶°Ç ¹× ºÎǰ ¼º´É¿¡ ¹ÌÄ¡´Â ¿µÇâÀÇ »ó¼¼ÇÑ Á¶»ç
  • ¾çÀÚ±Þ ¼öµ¿ ºÎǰ ½ÃÀå ±Ô¸ð ¹× ¿¹Ãø(-2030³â)

±â¼ú »ó¼¼

  • ÃÊÀú¼Õ½Ç Ä¿ÆÐ½ÃÅÍ : »çÆÄÀ̾î, ½Ç¸®ÄÜ, ÷´Ü ¼¼¶ó¹Í ±âÆÇ
  • Á¤¹Ð ÀúÇ×±â : ¾çÀÚ ÇÑ°è ³ëÀÌÁî Æ¯¼º°ú ¿Âµµ °è¼ö
  • °íQ ÀδöÅÍ : ÃÊÀüµµ Àç·á¿Í ÀÚ±âÀå ³»¼º
  • ½ÅÀç·á : ±×·¡ÇÉ, ´ÙÀ̾Ƹóµå ±âÆÇ, À̱¹ÀûÀÎ À¯Àüü µî

½ÃÀå ÀÎÅÚ¸®Àü½º

  • ¼¼°è ¾çÀÚ ÄÄÇ»ÆÃ Çϵå¿þ¾î ÅõÀÚ¿Í ºÎǰ ¼ö¿ä¿¡ ¹ÌÄ¡´Â ¿µÇâ
  • ¾çÀÚ µî±Þ Àç·á °ø±Þ¸Á ºÐ¼® ¹× Á¦Á¶ ´É·Â
  • ¾çÀÚ ºÐ¾ß¿¡ ÁøÀÔÇÏ´Â Àü¹® ºÎǰ Á¦Á¶¾÷ü °æÀï ±¸µµ
  • QPU ¹× ±ØÀú¿Â ½Ã½ºÅÛÀ» Æ÷ÇÔÇÑ ¾çÀÚ ¼­ºê¾î¼Àºí¸®ÀÇ ÃÖÁ¾ ½ÃÀå ¼¼ºÐÈ­

ÁÖ¿ä ½ÃÀå Á¶»ç °á°ú

½ÃÀå ±Ô¸ð ¹× ¼ºÀå ¿¹Ãø

  • ¼¼°è ¾çÀÚ ¼öµ¿ ºÎǰ ½ÃÀå
  • ¿¹ÃøµÇ´Â °ßÁ¶ÇÑ ¼ºÀå(-2030³â)
  • ÃÖ´ëÀÇ ºÎ¹®ÀÌ µÇ´Â Ä¿ÆÐ½ÃÅÍ
  • ä¿ëÀ² ¼±µÎÀÇ ºÏ¹Ì, À̾ À¯·´, ¾Æ½Ã¾ÆÅÂÆò¾ç

ºÐ¼®ÇÒ ¿ëµµ

QPU

  • ÃÊÀüµµ ¾çÀÚ ºñÆ® ½Ã½ºÅÛ(IBM, Google, Rigetti)
  • Æ®·¦ À̿ ½Ã½ºÅÛ(IonQ, Honeywell)
  • Æ÷Åä´Ð ¾çÀÚ ÇÁ·Î¼¼¼­
  • Áß¼º ¿øÀÚ ¾çÀÚ ÄÄÇ»ÅÍ

¾çÀÚ ÀÎÇÁ¶ó

  • ±ØÀú¿Â ½Ã½ºÅÛ
  • ¾çÀÚ Á¦¾î ÀüÀÚ
  • »óÈ£ ¿¬°á
  • Àб⠽ýºÅÛ
  • Àü¿ø
  • ±âŸ ¼­ºê¾î¼Àºí¸®

½ÅÈï ½ÃÀå : ¼öµ¿ ºÎǰ À¯Çüº°

»õ·Î¿î ¾çÀÚ Ä¿ÆÐ½ÃÅÍ ½ÃÀå(2025-2030³â)

  • ¼¼¶ó¹Í ¸¶ÀÌÅ©·ÎÆÄ Ä¿ÆÐ½ÃÅÍ
  • ÇÃ¶ó½ºÆ½ Çʸ§ Ä¿ÆÐ½ÃÅÍ
  • ½Ç¸®ÄÜ Ä¿ÆÐ½ÃÅÍ
  • À°¹æÁ¤ ÁúÈ­ºØ¼Ò Ä¿ÆÐ½ÃÅÍ
  • °íºÐÀÚ ÅºÅ» Ä¿ÆÐ½ÃÅÍ
  • °íºÐÀÚ ¾Ë·ç¹Ì´½ ÀüÇØ Ä¿ÆÐ½ÃÅÍ
  • »êÈ­´Ï¿ÀºçÄ¿ÆÐ½ÃÅÍ
  • ´ÙÀ̾Ƹóµå ¹× »çÆÄÀ̾î Ä¿ÆÐ½ÃÅÍ
  • QPU ¹× ±ØÀú¿Â ½Ã½ºÅÛÀ» ÇâÇÑ »õ·Î¿î À¯ÀüüÀÇ °³¹ß

»õ·Î¿î ¾çÀÚ ÀúÇױ⠽ÃÀå(2025-2030³â)

  • ´ÏÅ©·Ò ¹Ú¸· ¹× ¹Ú ÀúÇ×±â
  • ÁúȭźŻ ¹Ú¸· ÀúÇ×±â
  • ±Ç¼± ÀúÇ×±â
  • Èĸ·(Ru02) Ĩ ¹× ³×Æ®¿öÅ©
  • ¹Ú¸· ÁýÀû ¼öµ¿ ¼ÒÀÚ
  • QPU¿Í ±ØÀú¿Â ½Ã½ºÅÛÀ» À§ÇÑ »õ·Î¿î ÀúÇױ⠰³¹ß

»õ·Î¿î ¾çÀÚ ÀδöÅÍ ½ÃÀå(2025-2030³â)

  • °í½Å·Ú¼º Æä¶óÀÌÆ® ºñµå
  • °í½Å·Ú¼º ¼¼¶ó¹Í Ĩ ÄÚÀÏ
  • ¼¼¶ó¹Í ÃÊÅ©
  • ¾çÀÚ ½Ã½ºÅÛ¿ë ½ÅÀڱ⠱â¼ú

Áö¿ª ½ÃÀå ºÐ¼®(2025-2030³â)

ºÏ¹Ì

  • IBM, ±¸±Û, ½ºÅ¸Æ®¾÷ÀÌ ¾çÀÚ ÄÄÇ»ÆÃ¿¡ ÅõÀÚ ÁÖµµ
  • National Quantum Initiative¸¦ ÅëÇÑ Á¤ºÎÀÇ ÀÚ±Ý Áö¿ø
  • ÷´Ü ÀüÀÚºÎǰÀÇ È®¸³µÈ °ø±Þ¸Á

À¯·´

  • Quantum Flagship ÇÁ·Î±×·¥ÀÌ ºÎǰ °³¹ß ÃßÁø
  • °­·ÂÇÑ Àç·á °úÇÐ ¹× Á¦Á¶ ´É·Â
  • ¾çÀÚ Åë½Å ¹× ¾çÀÚ ¼¾½Ì ¿ëµµ¿¡ ÁÖ·Â

¾Æ½Ã¾ÆÅÂÆò¾ç

  • Áß±¹, ÀϺ», Çѱ¹À¸·ÎºÎÅÍÀÇ ´Ù¾×ÀÇ ÅõÀÚ
  • ´ë·® »ý»êÀ» À§ÇÑ Á¦Á¶ ±Ô¸ðÀÇ ¿ìÀ§¼º
  • ¾çÀÚ ÄÄÇ»ÆÃ ¿¬±¸ Àü·« È®´ë

°æÀï ±¸µµ ºÐ¼®

¸¶ÄÏ ¸®´õ

  • ¾çÀÚ ºÎǰÀ» °ø±ÞÇÏ´Â ±âÁ¸ ¹× ½ÅÈï Ä¿ÆÐ½ÃÅÍ, ÀúÇ×±â, ÀδöÅÍ º¥´õ
  • Ư¼ö ±ØÀú¿Â ºÎǰ Á¦Á¶¾÷ü

½ÅÈï±â¾÷

  • ÀÚ»çÁ¦ ºÎǰÀ» °³¹ßÇÏ´Â ¾çÀÚ ÄÄÇ»ÆÃ Çϵå¿þ¾î ±â¾÷
  • ÆÄ±«Àû ±â¼úÀ» °¡Áø ½ºÅ¸Æ®¾÷
  • ȹ±âÀûÀÎ Àç·áÀÇ ¶óÀ̼±½ÌÀ» ½Ç½ÃÇÏ´Â ¿¬±¸ ±â°ü

¼öµ¿ ºÎǰ ±â¼úÀÇ ¾ð¸ä ¿ä±¸

  • Ä¿ÆÐ½ÃÅÍÀÇ ±âȸ : ¾çÀÚ ½Ã½ºÅÛ ¹× ¼­ºê ¾î¼Àºí¸®¿¡¼­ À¯Àüüº°(2025-2030³â)
  • ÀúÇ×±âÀÇ ±âȸ : ¾çÀÚ ½Ã½ºÅÛ ¹× ¼­ºê ¾î¼Àºí¸®¿¡¼­ À¯Çüº°(2025-2030³â)
  • ÀδöÅÍÀÇ ±âȸ : ¾çÀÚ ½Ã½ºÅÛ ¹× ¼­ºê ¾î¼Àºí¸®¿¡¼­ À¯Çüº°(2025-2030³â)

¿¹Ãø(2025-2030³â)

´ç»çÀÇ Á¾ÇÕÀûÀÎ ¿¹Ãø ¸ðµ¨¿¡´Â ´ÙÀ½ÀÌ Æ÷ÇԵ˴ϴÙ.

  • ¾çÀÚ ÄÄÇ»ÆÃ Çϵå¿þ¾î ¿¹Ãø(2025-2030³â)
  • °¢ ¾çÀÚ ½Ã½ºÅÛÀÇ ºÎǰ ¿ä°Ç ºÐ¼®
  • ½Å±â¼úÀÇ °¡°Ý ź·Â¼º ¸ðµ¨
  • ¾çÀÚ ¿ëµµ¿¡ ƯȭÇÑ ±â¼ú ä¿ë °î¼±
  • ¾çÀÚ Ä¿ÆÐ½ÃÅÍ ½ÃÀå ¿¹Ãø(2025-2030³â)
  • ¾çÀÚ ÀúÇױ⠽ÃÀå ¿¹Ãø(2025-2030³â)
  • ¾çÀÚ ÀδöÅÍ ½ÃÀå ¿¹Ãø(2025-2030³â)
  • ¾ð¸ä ¿ä±¸ÀÇ Æò°¡
  • ¾çÀÚ µî±Þ ¼öµ¿ ºÎǰ¿¡ °üÇÑ 45 °³ ÀÌ»óÀÇ °ø±Þ¾÷üÀÇ °ËÅä
  • 5 °³³â ¿¹Ãø : ºÎǰ À¯Çüº°, ¿ëµµº°, Áö¿ªº°
AJY 25.09.03

Executive Summary

The "Ultra-Low Loss and Precision Capacitors, Resistors and Inductors For Emerging Quantum Systems: World Markets, Technologies and Opportunities: 2025-2030", is a groundbreaking market study on passive electronic components specifically engineered for quantum computing applications. This comprehensive 133 page analysis represents the first dedicated market research examining the specialized requirements, emerging technologies, and commercial opportunities for capacitors, resistors, and inductors in quantum processing units (QPUs) and quantum systems infrastructure.

Study Highlights

Revolutionary Market Analysis

  • First-of-its-kind comprehensive study dedicated to passive components in quantum computing
  • Analysis of ultra-low loss dielectric materials and precision manufacturing requirements
  • Detailed examination of cryogenic operating conditions and their impact on component performance
  • Market sizing and forecasting for quantum-grade passive components through 2030

Technology Deep Dive

  • Ultra-Low Loss Capacitors: Sapphire, silicon, and advanced ceramic substrates
  • Precision Resistors: Quantum-limited noise characteristics and temperature coefficients
  • High-Q Inductors: Superconducting materials and magnetic field immunity
  • Emerging materials including graphene, diamond substrates, and exotic dielectrics

Market Intelligence

  • Global quantum computing hardware investments and their impact on component demand
  • Supply chain analysis for quantum-grade materials and manufacturing capabilities
  • Competitive landscape of specialized component manufacturers entering the quantum space
  • End-market segmentation across quantum sub-assemblies including QPU and Cryogenic systems.

Key Market Findings

Market Size & Growth Projections

  • Global quantum passive components market
  • Projected robust growth through 2030
  • Capacitors representing the largest segment
  • North America leading adoption, followed by Europe and Asia-Pacific regions

Target Applications Analyzed

Quantum Processing Units (QPUs)

  • Superconducting qubit systems (IBM, Google, Rigetti)
  • Trapped ion systems (IonQ, Honeywell)
  • Photonic quantum processors
  • Neutral atom quantum computers

Quantum Infrastructure

  • Cryogenic systems
  • Quantum control electronics
  • Interconnects
  • Read-Out Systems
  • Power Supplies
  • Other Sub-assemblies

Emerging Markets by Passive Component Type

Emerging Quantum Capacitor Markets: 2025-2030

  • Ceramic Microwave Capacitors
  • Plastic Film Capacitors
  • Silicon Capacitors
  • Hexagonal Boron Nitride Capacitors
  • Polymer Tantalum Capacitors
  • Polymer Aluminum Capacitors
  • Niobium Oxide Capacitors
  • Diamond/Sapphire Capacitors
  • New Dielectric Development for QPU and Cryogenic Systems

Emerging Quantum Resistor Markets: 2025-2030

  • Nichrome Film and Foil Resistors
  • Tantalum Nitride Thin Film Resistors
  • Wirewound Resistors
  • Thick Film (Ru02) Chips and Networks
  • Thin Film Integrated Passive Devices
  • New Resistor Development for QPU and Cryogenic Systems

Emerging Quantum Inductor Markets: 2025-2030

  • High Reliability Ferrite Bead
  • High Reliability Ceramic Chip Coil
  • Ceramic Chokes
  • Emerging Magnetic Technologies for Quantum Systems

Regional Market Analysis: 2025-2030

North America

  • Leading quantum computing investments from IBM, Google, and startups
  • Government funding through National Quantum Initiative
  • Established supply chain for advanced electronic components

Europe

  • Quantum Flagship program driving component development
  • Strong materials science and manufacturing capabilities
  • Focus on quantum communication and sensing applications

Asia-Pacific

  • Significant investments from China, Japan, and South Korea
  • Manufacturing scale advantages for volume production
  • Growing quantum computing research initiatives

Competitive Landscape Analysis

Market Leaders

  • Traditional and emerging capacitor, resistor and inductor vendors supplying Quantum Components
  • Specialized cryogenic component manufacturers

Emerging Players

  • Quantum computing hardware companies developing in-house components
  • Startup companies with disruptive technologies
  • Research institutions licensing breakthrough materials

Unmet Needs in Passive Component Technology

  • Opportunities for Capacitors by Dielectric in Quantum Systems and Sub-Assemblies: 2025-2030
  • Opportunities for Resistors by Type in Quantum Systems and Sub-Assemblies: 2025-2030
  • Opportunities for Inductors by Type in Quantum Systems and Sub-Assemblies: 2025-2030

Forecasting 2025-2030

Our comprehensive forecasting model incorporates:

  • Quantum computing hardware forecasts: 2025-2030
  • Component requirement per quantum system analysis
  • Price elasticity modeling for emerging technologies
  • Technology adoption curves specific to quantum applications
  • Quantum Capacitor Market Forecasts: 2025-2030
  • Quantum Resistor Market Forecasts: 2025-2030
  • Quantum Inductor Market Forecasts: 2025-2030
  • Unmet Needs Assessment
  • 45+ Vendors Reviewed for Quantum Grade Passive Components
  • 5-year forecasts by component type, application, and region

Why This Study Matters

As quantum computing transitions from academic research to commercial reality, the demand for specialized passive components is creating entirely new market opportunities. Traditional electronic components fail to meet the extreme performance requirements of quantum systems, driving the need for revolutionary approaches to capacitor, resistor, and inductor design and manufacturing.

This study provides the critical market intelligence needed by:

  • Component manufacturers evaluating quantum market entry strategies
  • Quantum computing companies seeking reliable component suppliers
  • Investors assessing opportunities in the quantum supply chain
  • Materials suppliers understanding quantum-grade requirements
  • Government agencies planning quantum infrastructure investments
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦