![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1339936
¼¼°èÀÇ Áö¿ª³¹æ ½ÃÀå ¿¹Ãø(-2030³â) : ¿¿øº°, ±¸¼º¿ä¼Òº°, Ç÷£Æ® À¯Çüº°, ¿ëµµº° ¹× Áö¿ªº° ºÐ¼®District Heating Market Forecasts to 2030 - Global Analysis By Heat Source, Component, Plant Type, Application and By Geography |
Stratistics MRC¿¡ µû¸£¸é ¼¼°è Áö¿ª³¹æ ½ÃÀåÀº 2023³â 1,815¾ï 8,000¸¸ ´Þ·¯¿¡ À̸£°í, ¿¹Ãø ±â°£ µ¿¾È 8.2%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 3,152¾ï 5,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÈ´Ù°í ÇÕ´Ï´Ù.
Áö¿ª³¹æÀº Áß¾Ó¿¡¼ ¿À» »ý»êÇÏ¿© ÀαÙÀÇ °¡Á¤, ±â¾÷, »ê¾÷½Ã¼³¿¡ ºÐ¹èÇÏ´Â ¹æ½ÄÀÔ´Ï´Ù. Áö¿ª³¹æÀº ºñ¿ë È¿À²ÀûÀÌ°í »ýÅÂÀûÀ¸·Îµµ ģȯ°æÀûÀÎ Á¢±Ù ¹æ½ÄÀÔ´Ï´Ù. ´Üµ¶ÁÖÅÃ, °øµ¿ÁÖÅÃ, °íÃþ°Ç¹°, ´ëÇü Ÿ¿î½Ê, Áö¿ª³¹æ¿¡ ÀÚÁÖ »ç¿ëµË´Ï´Ù. °³º° °Ç¹° ¼³ºñ¿¡ ºñÇØ ¾ÈÀü¼º°ú ½Å·Ú¼º Çâ»ó, ¹èÃâ·® °¨¼Ò, ¿¬·á À¯¿¬¼º Çâ»ó(ƯÈ÷ ¹ÙÀÌ¿À¸Å½º, Æó±â¹° µî ´ëü ¿¬·á¸¦ »ç¿ëÇÏ´Â °æ¿ì) µî ¸¹Àº ÀÌÁ¡ÀÌ ÀÖ½À´Ï´Ù. Áö¿ª³¹æÀº ȼ®¿¬·á¿¡ ÀÇÁ¸ÇÏ´Â ³¹æÀ» Àç»ý °¡´É ¿¡³ÊÁö·Î ´ëüÇÏ¿© ź¼Ò ¹èÃâ·®°ú Àç»ý ºÒ°¡´ÉÇÑ ÀÚ¿ø¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³·Ãä´Ï´Ù. ÀÌ Àü·«Àº ³¶ºñ¸¦ ÁÙÀÌ°í »ç¿ë °¡´ÉÇÑ ¿¡³ÊÁö¸¦ ÃÖ´ëÇÑ È°¿ëÇÕ´Ï´Ù.
IEA¿¡ µû¸£¸é 2020³â ¼¼°è ¿ »ý»ê·®ÀÇ 90% °¡±îÀ̰¡ ȼ®¿¬·á¿¡ ÀÇÇÑ °ÍÀ¸·Î, ÁÖ·Î ¼®Åº(45%), õ¿¬°¡½º(40%), ¼®À¯(5%)·Î, 2000³â 95%¿¡¼ °¨¼ÒÇß½À´Ï´Ù.
µµ½ÃȰ¡ ÁøÇàµÊ¿¡ µû¶ó Áö¿ª³¹æ ½Ã½ºÅÛ¿¡ ÀÌ»óÀûÀΠü°èÀûÀÎ ÀÎÇÁ¶ó°¡ Çü¼ºµË´Ï´Ù. Áö¿ª³¹æ°ú ¹ßÀüÀº È®ÀåÇÏ´Â ´ëµµ½Ã Áö¿ª¿¡¼ ¼ö¿ä°¡ ¸¹Àº À¯Æ¿¸®Æ¼ ¼ºñ½ºÀÇ µÎ °¡Áö ¿¹ÀÔ´Ï´Ù. Áö¿ª³¹æ ½Ã½ºÅÛÀº º¸ÀÏ·¯, »ê¾÷ ¿©¿, Àç»ý °¡´É ¿¡³ÊÁö, CHP, º¸ÀÏ·¯ µî ´Ù¾çÇÑ ¿¿ø¿¡¼ ¿À» ¾ò´Â´Ù. »ê¾÷Ȱ¡ È®´ëµÊ¿¡ µû¶ó ±â¾÷ ¹× µ¥ÀÌÅͼ¾ÅÍ¿¡¼ ¹ß»ýÇÏ´Â ¸·´ëÇÑ ¿À» Áö¿ª³¹æ¿¡ Ȱ¿ëÇÏ¸é °æÁ¦Àû È¿À²¼º¿¡ ±â¿©ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿ä¼Ò°¡ Áö¿ª³¹æ ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖ½À´Ï´Ù.
Áö¿ª³¹æÀº À¯·ÂÇÑ °³¹ß¾÷ü°¡ ´ë±Ô¸ð·Î ÃßÁøÇÏ´Â °ÍÀÌ ÀûÇÕÇÕ´Ï´Ù. ±× ÁÖµÈ ÀÌÀ¯´Â ¼Ò±Ô¸ð °³¹ß¾÷ü°¡ Áö¿ª³¹æÀÇ ÀåÁ¡À» ÀνÄÇϰí ÀÖÁö¸¸, °ÇÃà ÀÏÁ¤°ú ÅõÀÚ ±Ý¾×ÀÌ ´Ù¸£±â ¶§¹®¿¡ Àα٠°³¹ß¾÷ü¿Í Çù·ÂÇÏ¿© Áö¿ª³¹æÀ» µµÀÔÇÏÁö ¾Ê±â ¶§¹®ÀÔ´Ï´Ù. ±× °á°ú ¼Ò±Ô¸ð °³¹ß¾÷üµéÀº ÀڽŵéÀÇ ÀÏÁ¤¿¡ ¸ÂÃß¾î ±âÁ¸ ³¹æÀ» ÀÌ¿ëÇϰí ÀÖ½À´Ï´Ù. °Ç¹° °Ç¼³ Áß ¹è°ü¸Á ¼³Ä¡ °ø°£À» È®º¸ÇÒ ¼ö ÀÖ´Â ½Å±Ô ÇÁ·ÎÁ§Æ®´Â ¸ðµÎ Áö¿ª³¹æÀ» ÀÌ¿ëÇϰí ÀÖ½À´Ï´Ù. ±×·¯³ª ¿À·¡µÈ °Ç¹°Àº ¹è°ü¸ÁÀ» ¼³Ä¡ÇÒ °ø°£ÀÌ ÃæºÐÇÏÁö ¾Ê¾Æ Áö¿ª³¹æÀÇ º¸±ÞÀ» Á¦ÇÑÇÏ´Â °æ¿ì°¡ ÀÖ½À´Ï´Ù.
ÃÖ±Ù ¸î ³âµ¿¾È ¼¼°è Àα¸°¡ ±Þ°ÝÈ÷ Áõ°¡ÇÏ¸é¼ ¸¹Àº Áö¿ª¿¡¼ µµ½ÃȰ¡ ºü¸£°Ô ÁøÇàµÇ°í ÀÖ½À´Ï´Ù. ÀÌ´Â ´Ù¾çÇÑ ÃÖÁ¾ »ç¿ë »ê¾÷¿¡¼ ¿¡³ÊÁö ¼ö¿ä¸¦ Á÷Á¢ÀûÀ¸·Î Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù. Àü·Ê ¾ø´Â ÀÌ»êÈź¼Ò ¹èÃâ°ú Áö±¸ ¿Â³È´Â Áö±¸¿¡ À§ÇèÀ» ÃÊ·¡Çϰí ÀÖÀ¸¸ç, Àç»ý °¡´É ¿¡³ÊÁö¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. Áö¿ª ¿¡³ÊÁö ½Ã½ºÅÛÀº °æÁ¦¸¦ º¸´Ù ģȯ°æÀûÀ¸·Î ÀüȯÇÏ°í ³Ã³¹æÀ¸·Î ÀÎÇÑ ¿Â½Ç°¡½º ¹èÃâÀ» ÁÙÀÌ´Â µ¥ µµ¿òÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ±× °á°ú CO2 ¹èÃâ·®À» ÃÖ´ë 70%±îÁö ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀÎÀ¸·Î ÀÎÇØ ½ÃÀå È®´ë°¡ °¡¼Óȵǰí ÀÖ½À´Ï´Ù.
Áö¿ª³¹æ ½Ã½ºÅÛÀ» ±¸ÃàÇÏ·Á¸é ¾ÈÀüÇÑ ¼Û¹èÀü ¿¬°á¸ÁÀ» ±¸ÃàÇÏ´Â µ¥ µå´Â ºñ¿ëÀ¸·Î ÀÎÇØ ¸¹Àº Ãʱâ ÅõÀÚ°¡ ÇÊ¿äÇÕ´Ï´Ù. Àý¿¬ ÆÄÀÌÇÁ¿Í ±× ÁöÇÏ ¸Å¼³ ºñ¿ëÀº ÅõÀÚÀڵ鿡°Ô Å« À庮ÀÌ µË´Ï´Ù. ¶ÇÇÑ, ÇÊ¿äÇÑ ÀÎÇÁ¶óÀÇ ºÎÀç¿Í °ø°£ ³¹æ ¹× ¿Â¼ö °ø±ÞÀ» À§ÇÑ ´õ Àú·ÅÇÑ ´Ù¸¥ ¼Ö·ç¼ÇÀÇ °¡¿ë¼ºÀº ÇâÈÄ ¸î ³âµ¿¾È ½ÃÀå È®ÀåÀ» ¾ïÁ¦ÇÒ ¼ö ÀÖ½À´Ï´Ù.
Äڷγª19 Àü¿°º´Àº Áö¿ª³¹æ ½ÃÀå È®´ë¿¡ Å« ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. Ä¡¸íÀûÀÎ Äڷγª ¹ÙÀÌ·¯½ºÀÇ ÃâÇöÀ¸·Î Áö¿ª³¹æ ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä°¡ Àü¹ÝÀûÀ¸·Î °¨¼ÒÇÏ¿© ÁÖ¿ä ÀÎÇÁ¶ó ÇÁ·ÎÁ§Æ®°¡ Áö¿¬µÇ°í ¸¹Àº »ê¾÷ ¹× Á¦Á¶ »ê¾÷ÀÌ ÀϽÃÀûÀ¸·Î Æó¼âµÇ¾ú½À´Ï´Ù. ¶ÇÇÑ Àü¿°º´ ±â°£ µ¿¾È °ÅÀÇ ¸ðµç °ÇÃà ÇÁ·ÎÁ§Æ®°¡ º¸·ùµÇ°í ¼¼°è °¢±¹ Á¤ºÎ°¡ ¾ö°ÝÇÑ ±ÔÁ¦¿Í ¹«¿ª Á¦ÇÑÀ» ¼³Á¤ÇÔ¿¡ µû¶ó ¼¼°è ½ÃÀåÀº Å« Á¦¾àÀ» ¹Þ¾Ò½À´Ï´Ù.
¿º´ÇÕ¹ßÀü ºÐ¾ß´Â ³ôÀº Áö¼Ó°¡´É¼º°ú ºñ¿ë È¿À²¼ºÀ¸·Î ÀÎÇØ ¼ºÀå °¡´É¼ºÀÌ ³ôÀ» °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¿¡³ÊÁö °ø±Þ È¿À² Çâ»ó, Æó¿ Ȱ¿ë, Àúź¼Ò Àç»ý °¡´É ¿¡³ÊÁö¿øÀ¸·Î ÀÎÇØ Á¦Ç° ¼ö¿ä°¡ Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ź¼Ò ¹ßÀÚ±¹ °¨¼Ò¿Í ºñ¿ë Àý°¨À» ¿ä±¸ÇÏ´Â Àû±ØÀûÀÎ ±ÔÁ¦ ±âÁصµ ¼ºÀåÀ» °¡¼ÓÇÒ ¼ö ÀÖ½À´Ï´Ù. Áö¼Ó °¡´ÉÇÑ Àü·Â, ¿, °ø±Þ¿¡ ´ëÇÑ ÆÐ·¯´ÙÀÓ Àüȯ°ú ¿¡³ÊÁö È¿À² Çâ»óÀ» À§ÇÑ ¹ýÀû ¸ñÇ¥°¡ ¸ðµÎ ¿º´ÇÕ¹ßÀü ½Ã½ºÅÛÀ» ÀÌ ºÐ¾ß·Î ²ø¾îµéÀÌ´Â µ¥ µµ¿òÀÌ µÉ °ÍÀÔ´Ï´Ù. ¿º´ÇÕ¹ßÀü ½Ã½ºÅÛ ºÐ¾ßÀÇ ¼ºÀåÀº ÀÌ ¸ðµç Àü¸Á¿¡ ÀÇÇØ ÃËÁøµÇ°í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È CAGRÀÌ °¡Àå ºü¸£°Ô ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ºÐ¾ß´Â ÁÖÅà ºÎ¹®ÀÔ´Ï´Ù. ¼ÒÇü ³¹æ ½Ã½ºÅÛÀÇ º¸±Þ°ú ºÎµ¿»ê ÅõÀÚ È£Á¶·Î ÁÖÅÿë Áö¿ª³¹æ ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. µµ½Ã Àα¸ Áõ°¡¿Í ºÐ»êÇü ¹ßÀü±âÀÇ »ç¿ë Áõ°¡´Â ºñÁî´Ï½º ȯ°æ¿¡ ±àÁ¤ÀûÀÎ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù. ±Þ¼ÓÇÑ µµ½ÃÈ¿Í »ê¾÷È´Â »ó¾÷ ºÎ¹®ÀÇ Áö¿ª³¹æ ½Ã½ºÅÛ ¼ö¿ä¿¡ ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¶ÇÇÑ »õ·Î¿î »ý»ê ½Ã¼³ ¹× À¯´Ö °Ç¼³¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡´Â ÀÌ »ç¾÷ ºÎ¹®ÀÇ È®ÀåÀ» ÃËÁøÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Áß±¹Àº Áö¿ª ¿¡³ÊÁöÀÇ ÁÖ¿ä ¼Òºñ±¹ÀÔ´Ï´Ù. Áß±¹Àº ´õ ±ú²ýÇÏ°í ¿¡³ÊÁö È¿À²ÀûÀÎ Áö¿ª ¿¡³ÊÁö¸¦ ÃËÁøÇϱâ À§ÇØ °·ÂÇÑ °ø°ø Á¤Ã¥ ¼±ÅÃÀ» Ãß±¸Çϰí ÀÖ½À´Ï´Ù. ÀΰøÁö´ÉÀº ÁÖ¿ä ÀÌÇØ°ü°èÀÚµéÀÌ Áö¿ª³¹æ ½Ã½ºÅÛÀÇ ¿î¿µ »óŸ¦ Á¦¾îÇϱâ À§ÇØ È°¿ëµÇ°í ÀÖ½À´Ï´Ù. Á¦Á¶¾÷üµéÀº ¶ÇÇÑ »ý»ê¼ºÀ» ³ôÀÌ°í ¿¡³ÊÁö¸¦ Àý¾àÇϱâ À§ÇØ ÀΰøÁö´É°ú ÇÔ²² ÀÛµ¿ÇÏ´Â ÃÖ÷´Ü ÀÚµ¿È¸¦ ¸ñÇ¥·Î Çϰí ÀÖ½À´Ï´Ù. ½ÃÀåÀÇ ±â¼ú ¹ßÀüµµ ½ÃÀå È®´ë¸¦ °¡¼ÓÈÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È À¯·´ÀÌ °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¶ÇÇÑ, µµ½ÃÈ È®´ë, ¿¡³ÊÁö È¿À²ÀÌ ³ôÀº ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, ¿Â½Ç°¡½º ¹èÃâ·® °¨¼Ò¸¦ À§ÇÑ Á¤ºÎÀÇ ±ÔÁ¦ °È µîÀÌ ¼ºÀå ¿äÀÎÀ¸·Î ÀÛ¿ëÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. ¶ÇÇÑ, À¯·´ÀÇ Áö¿ª³¹æ ºÎ¹®ÀÇ È®´ë´Â ¿©·¯ ȯ°æ ´Üü°¡ ¼³Á¤ÇÑ ¾ö°ÝÇÑ ¹èÃâ Á¦ÇÑ¿¡ ÀÇÇØ µÞ¹ÞħµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¹Ì±¹ ȯ°æº¸È£Ã»(EPA)ÀÇ ¹èÃâ·® °¨Ãà¿¡ ´ëÇÑ °Á¶¿Í ¼øÅº¼Ò ¹èÃâ·® Á¦·Î¸¦ Ãß±¸ÇÏ´Â °Íµµ Áö¿ª³¹æ ½ÃÀå È®´ë¿¡ ¹ÚÂ÷¸¦ °¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
According to Stratistics MRC, the Global District Heating Market is accounted for $181.58 billion in 2023 and is expected to reach $315.25 billion by 2030 growing at a CAGR of 8.2% during the forecast period. In district heating, heat is produced centrally and then distributed to nearby households, companies, and industrial facilities. District heating is a cost-effective and ecologically responsible approach. It is frequently used in single-family homes, multi-family buildings, high-rise structures, and mega townships, district heating. Comparing it to individual building equipment provides a number of benefits, such as increased safety and reliability, reduced emissions, and higher fuel flexibility, especially when using alternative fuels like biomass or waste. District heating lessens carbon emissions and dependency on non-renewable resources by substituting renewable energy for heating that is dependent on fossil fuels. This strategy reduces waste and makes the best use of available energy.
According to IEA, nearly 90% of global heat production in 2020 was from fossil fuels, primarily coal (45%), natural gas (40%), and oil (5%), down from 95% in 2000.
Increasing urbanization results in the creation of well-organized infrastructure that are ideal for district heating systems. District heating and power generation are two examples of utility services that are in high demand in expanding metropolitan areas. District heating systems obtain heat from a variety of sources, such as boilers, industrial surplus heat, renewable energy, CHP, and boilers. The enormous heat produced by businesses and data centers as a result of expanding industrialization may be used for district heating, which in turn contributes to economic efficiency. This element helps to propel the growth of district heating market.
Large-scale initiatives by powerful developers are appropriate for district heating. The main reason for this is because small-scale developers, although being aware of the advantages of district heating, do not implement it in tandem with nearby developers due to their divergent building timelines and investments. Small-scale developers consequently use traditional heating according to their timetable. Every new project that may plan room for a pipe network during building construction uses district heating solutions. However, an inadequate amount of room for a pipe network may be present in older structures, which restricts its penetration.
Since the population of the world has been increasing at an exponential rate in recent years, many regions have been seeing a surge in urbanization. Because of this, demand for energy across a range of end-use industries has directly grown. Unprecedented carbon emissions and global warming are posing hazards to the planet, which has spurred interest in renewable energy sources. District energy systems help the economy move to a greener one and lower the greenhouse gas emissions from cooling and heating. As a consequence, CO2 emissions are reduced by up to 70%. These factors hasten market expansion.
A significant initial financial outlay is needed to set up a district heating system since it is expensive to build a secure network of transmission and distribution connections. The cost of the insulated pipes and the underground placement of such pipes is a significant barrier for investors. Additionally, the absence of necessary infrastructure and the availability of other, more affordable solutions for space heating and water heating may restrain market expansion in the years to come.
The COVID-19 epidemic has had a big influence on the market expansion for district heating. District heating system demand has decreased overall as a result of the fatal corona virus's appearance, which has caused delays in major infrastructure projects and the temporary closure of a number of industrial and manufacturing businesses. Additionally, almost all building projects were put on hold during the epidemic, and governments all over the world established strict regulations and trade restrictions, which severely constrained the worldwide market.
The combined heat & power segment is estimated to have a lucrative growth, due to its high sustainability and cost-effectiveness. It is anticipated that increased energy supply efficiency, the utilization of waste heat, and low-carbon renewable energy sources will increase product demand. Positive regulatory standards for reduced carbon footprints and cost savings may promote growth. A paradigm change toward sustainable power, heat, and supply, as well as legislative objectives to increase energy efficiency, all help the sector embrace cogeneration systems. The segment's growth is being fuelled by all of these prospects.
The residential segment is anticipated to witness the fastest CAGR growth during the forecast period. The demand for district heating systems in residential buildings has increased due to the widespread usage of compact heating systems and robust real estate investment. Rising urban population and increased use of decentralized generators may have a favorable effect on the business environment. Fast-paced urbanization and industrialization are predicted to have an impact on the demand for district heating systems in the commercial sector. Increased investments in the construction of new production facilities and units are also anticipated to fuel the business segment's expansion.
Asia Pacific is projected to hold the largest market share during the forecast period. China is the leading consumer of district energy. The nation has been pursuing forceful public policy choices to boost cleaner, energy-efficient district energy. Artificial intelligence is being used by the major stakeholders to control how well the district heating systems are running. The manufacturers are also aiming to create cutting-edge automation that would function in tandem with artificial intelligence to boost productivity and conserve energy. The market's technical advancements are also anticipated to accelerate expansion.
Europe is projected to have the highest CAGR over the forecast period. Additionally, the growth is linked to expanding urbanization, a rise in the demand for energy-efficient systems, and a rise in the number of restrictions by the government aimed at lowering greenhouse gas emissions. Furthermore, the expansion of the district heating sector in Europe is supported by rigorous emission limitations established by several environmental organisations. Additionally, the Environmental Protection Agency's (EPA) increased emphasis on emission reduction and its pursuit of net-zero carbon emissions are anticipated to fuel the market expansion for district heating.
Some of the key players profiled in the District Heating Market include: NRG Energy, Fortum, LOGSTOR A/S, Goteborg Energi, Kelag Warme Gmbh, Vattenfall AB, Hafslund, STEAG GmbH, Korea District Heating Corporation, Statkraft AS, Keppel DHCS Pte Ltd, Shinryo Corporation, Orsted, RWE AG, Vital Energi, Danfoss, Engie, Enwave Energy, Ramboll Group and FVB Energy.