½ÃÀ庸°í¼­
»óǰÄÚµå
1462667

ÇØ¾ç ¼±¹Ú¿ë ¼±ÅÃÀû Ã˸Šȯ¿ø(SCR) ½Ã½ºÅÛ ½ÃÀå ¿¹Ãø(-2030³â) : À¯Çü, ¿ëµµ, ÃÖÁ¾ »ç¿ëÀÚ ¹× Áö¿ªº° ¼¼°è ºÐ¼®

Offshore Marine Selective Catalytic Reduction Systems Market Forecasts to 2030 - Global Analysis By Type, Application, End User and by Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é, ¼¼°è ÇØ¾ç ¼±¹Ú¿ë ¼±ÅÃÀû Ã˸Šȯ¿ø(SCR) ½Ã½ºÅÛ ½ÃÀåÀº 2023³â 2¾ï 7,870¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú°í, ¿¹Ãø ±â°£ µ¿¾È ¿¬Æò±Õ 8.6% ¼ºÀåÇÏ¿© 2030³â¿¡´Â 4¾ï 9,653¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ÇØ¾ç ¼±¹Ú¿ë ¼±ÅÃÀû Ã˸Šȯ¿ø(SCR) ½Ã½ºÅÛÀ¸·Î ¾Ë·ÁÁø ÷´Ü ¹è±â°¡½º Á¦¾î ±â¼úÀº ƯÈ÷ ÇØ¾ç ȯ°æ¿¡¼­ ¿îÇ×ÇÏ´Â ¼±¹ÚÀ» À§ÇØ °³¹ßµÇ¾ú½À´Ï´Ù. ÀÌ ½Ã½ºÅÛÀº È­ÇÐ ¹ÝÀÀÀ» ÅëÇØ ¼±¹Ú ¿£Áø¿¡¼­ ¹èÃâµÇ´Â Áú¼Ò»êÈ­¹°(NOx)À» ¹«ÇØÇÑ Áú¼Ò¿Í ¼öÁõ±â·Î ÀüȯÇÏ¿© À¯ÇØÇÑ ¹èÃâ°¡½º¸¦ °¨¼Ò½Ã۵µ·Ï ¼³°èµÇ¾ú½À´Ï´Ù. ÀÌ º¯È¯Àº ÀϹÝÀûÀ¸·Î ¿ä¼Ò ±â¹Ý ¿ë¾×À» ¹è±â È帧¿¡ ÁÖÀÔÇÏ´Â ÇØ¾ç SCR ½Ã½ºÅÛÀÇ Ã˸ſ¡ ÀÇÇØ º¸Á¶µË´Ï´Ù.

±¹Á¦ÇØ»ç±â±¸(IMO)¿¡ µû¸£¸é, ÇØ¾ç ¼±¹ÚÀÇ Áú¼Ò»êÈ­¹°(NOx) ¹èÃâÀ» ÁÙÀÌ°í ¼¼°è ȯ°æ ±âÁØÀ» ÁؼöÇϱâ À§Çؼ­´Â ÇØ¾ç ¼±¹Ú¿ë ¼±ÅÃÀû Ã˸Šȯ¿ø(SCR) ½Ã½ºÅÛÀ» µµÀÔÇÏ´Â °ÍÀÌ ¸Å¿ì Áß¿äÇÕ´Ï´Ù.

ȯ°æ ¿µÇâ¿¡ ´ëÇÑ ÀÎ½Ä Áõ°¡

ÇØ¾ç ¼±¹Ú¿ë SCR ½Ã½ºÅÛ ½ÃÀå¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â Áß¿äÇÑ ¿äÀÎÀº ÇØ¾ç ¿îÇ×ÀÌ È¯°æ¿¡ ¹ÌÄ¡´Â ¾Ç¿µÇâ¿¡ ´ëÇÑ »çȸÀû ÀνÄÀÌ ³ô¾ÆÁö°í ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ÀÎ½Ä Áõ°¡´Â ´ë±â ¿À¿°°ú ÇØ¾ç »ýŰ迡 ¹ÌÄ¡´Â ¿µÇâ¿¡ ´ëÇÑ ¿ì·ÁÀÇ °á°úÀ̸ç, Á¤ºÎ, ȯ°æ ´Üü, ÀÏ¹Ý ½Ã¹Î µî ´Ù¾çÇÑ ÃâóÀÇ ¾Ð·ÂÀ» ºÒ·¯ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¼±ÁÖ¿Í ¿î¿µÀÚµéÀº SCR ½Ã½ºÅÛ°ú °°Àº ¹èÃâ °¨¼Ò ±â¼ú¿¡ ÅõÀÚÇÏ°í ±â¾÷ÀÇ »çȸÀû Ã¥ÀÓ(CSR)À» °­È­ÇÔÀ¸·Î½á ÇØ¾ç ÇØ¾ç »ê¾÷¿¡¼­ Áö¼Ó °¡´ÉÇÑ °üÇàÀ» Áö¿øÇÏ´Â °ÍÀÌ ¾ó¸¶³ª Áß¿äÇÑÁö Á¡Á¡ ´õ ¸¹ÀÌ ÀνÄÇϰí ÀÖ½À´Ï´Ù.

³ôÀº Àںδ㠺ñ¿ë

ÇØ¾ç ¼±¹Ú¿ë SCR ½Ã½ºÅÛ ½ÃÀåÀÇ °¡Àå Å« ÀúÇØ¿äÀÎ Áß Çϳª´Â ³ôÀº Ãʱâ ÅõÀÚºñ¿ëÀÔ´Ï´Ù. ¼±¹Ú ¼ÒÀ¯ÁÖ ¹× ¿î¿µÀÚ´Â ³ôÀº Ãʱ⠺ñ¿ë, ¼³Ä¡ ºñ¿ë, °³Á¶ Áß ¼±¹ÚÀÇ °¡µ¿ Áß´Ü °¡´É¼ºÀ¸·Î ÀÎÇØ SCR Àåºñ µµÀÔÀ» Æ÷±âÇÏ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. ƯÈ÷ ¿¹»êÀÌ ÇÑÁ¤µÈ ¼Ò±Ô¸ð ¼±´ÜÀ̳ª ±â¾÷Àº ÀÌ·¯ÇÑ °æÁ¦Àû ºÎ´ãÀ¸·Î ÀÎÇØ SCR ±â¼úÀÌ È¯°æ°ú ¿î¿µ¿¡ Àå±âÀûÀÎ ÀÌÁ¡ÀÌ ÀÖÀ½¿¡µµ ºÒ±¸ÇÏ°í µµÀÔÀ» ²¨¸®´Â °æ¿ì°¡ ¸¹½À´Ï´Ù.

ÇØ¾ç Àç»ý °¡´É ¿¡³ÊÁö ºÐ¾ßÀÇ ¹ßÀü

ÇØ¾ç dz·Â ¹ßÀü¼Ò ¹× ÇØ¾ç ¿¡³ÊÁö ¼³ºñ¸¦ Æ÷ÇÔÇÑ ÇØ¾ç Àç»ý ¿¡³ÊÁö ºÎ¹®ÀÇ ±Þ¼ÓÇÑ ¼ºÀåÀ¸·Î ÀÎÇØ ÇØ¾ç ÇØ¾ç SCR ½Ã½ºÅÛ ½ÃÀåÀº ¸¹Àº ÀáÀç·ÂÀ» °¡Áö°í ÀÖ½À´Ï´Ù. Àü ¼¼°èÀûÀ¸·Î ÇØ¾ç Àç»ý¿¡³ÊÁö ÇÁ·ÎÁ§Æ®°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç, ÀÌ·Î ÀÎÇØ ÇØ¾ç ÀÎÇÁ¶ó ¹× ¼³Ä¡, À¯Áöº¸¼ö ¹× ¿î¿µÀ» Áö¿øÇÏ´Â Áö¿ø ¼±¹Ú¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, SCR ±â¼úÀÌ Å¾ÀçµÈ ¼±¹ÚÀº ¾ö°ÝÇÑ ¹èÃâ ±ÔÁ¦¸¦ ÁؼöÇϸ鼭 ÇØ¾ç Àç»ý °¡´É ¿¡³ÊÁö ¼³ºñ¸¦ À¯Áö °ü¸®ÇÒ ¼ö Àִ ģȯ°æÀûÀ̰í Áö¼Ó °¡´ÉÇÑ ¼ö´ÜÀ» Á¦°øÇÕ´Ï´Ù. µû¶ó¼­ SCR ½Ã½ºÅÛ °ø±Þ¾÷üµéÀº È®´ëµÇ´Â ÇØ¾ç Àç»ý ¿¡³ÊÁö ½ÃÀå¿¡¼­ ÀÌÀÍÀ» ¾òÀ» ¼ö ÀÖ´Â À§Ä¡¿¡ ÀÖ½À´Ï´Ù.

½ÃÀå Æ÷È­ ¹× °æÀï ¾Ð·Â

½ÃÀå Æ÷È­ °¡´É¼º°ú °æÀï ½ÉÈ­´Â ÇØ¾ç ÇØ¾ç SCR ½Ã½ºÅÛ ½ÃÀå¿¡ ½É°¢ÇÑ À§ÇùÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÇØ¿î¾÷°è°¡ ¹èÃâ°¡½º Àú°¨ ¹× ȯ°æÀû Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ Á߿伺À» °­Á¶Çϸ鼭 SCR ¼Ö·ç¼ÇÀ» Á¦°øÇÏ´Â ¼ö¸¹Àº °æÀï¾÷üµéÀÌ ½ÃÀå¿¡ ÁøÀÔÇϰí ÀÖÀ¸¸ç, SCR ½Ã½ºÅÛ °ø±Þ¾÷üµéÀº ÀÌ·¯ÇÑ °æÀï ½ÉÈ­·Î ÀÎÇØ °¡°Ý °æÀï, ÀÌÀ±À² Ç϶ô, ¼öÀͼº ÀúÇÏ µîÀÇ ¾î·Á¿òÀ» °ÞÀ» ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, µ¿Á¾ Á¦Ç° °ø±Þ¾÷ü°¡ ´Ù¼ö Á¸ÀçÇÏ¿© ½ÃÀåÀÌ Æ÷È­»óÅ¿¡ À̸£·¯ Â÷º°È­°¡ ¾î·Á¿öÁö°í °æÀï ¾Ð·ÂÀÌ ½ÉÈ­µÇ¾î ½ÃÀå Á¡À¯À²ÀÌ Ç϶ôÇÒ ¼ö ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ :

ÇØ¾ç ¼±¹Ú¿ë ¼±ÅÃÀû Ã˸Šȯ¿ø(SCR) ½Ã½ºÅÛ ½ÃÀåÀº Äڷγª19 ÆÒµ¥¹ÍÀ¸·Î ÀÎÇØ ¹èÃâ°¡½º Àú°¨ ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ°¡ µÐÈ­µÇ°í, °ø±Þ¸ÁÀÌ È¥¶õ½º·¯¿öÁö°í, ¼±¹Ú °³Á¶ ÇÁ·ÎÁ§Æ®°¡ Áö¿¬µÇ¸é¼­ Å« ¿µÇâÀ» ¹Þ°í ÀÖ½À´Ï´Ù. Àü¿°º´À¸·Î ÀÎÇÑ ¿©Çà Á¦ÇѰú °æ±â ħü·Î ÀÎÇØ ÇØ»ó Ȱµ¿ÀÌ °¨¼ÒÇÏ°í ¼±¹Ú ¿î¿µ»ç°¡ ¼Õ½ÇÀ» ¸¸È¸Çϱâ À§ÇØ ¿îÇ×À» Ãà¼ÒÇÔ¿¡ µû¶ó SCR ½Ã½ºÅÛ ½ÃÀå¿¡ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ¶ÇÇÑ, ÆÒµ¥¹ÍÀÇ ±â°£°ú ½É°¢¼º¿¡ ´ëÇÑ ºÒÈ®½Ç¼ºÀ¸·Î ÀÎÇØ ½ÃÀåÀÇ º¯µ¿¼ºÀÌ ³ô¾ÆÁ® ¼±ÁÖµéÀÌ ¼³ºñ ÅõÀÚ¸¦ ¿¬±âÇϰí Àå±âÀûÀÎ Áö¼Ó°¡´É¼º ÀÌ´Ï¼ÅÆ¼ºêº¸´Ù ´Ü±âÀûÀÎ ºñ¿ë Àý°¨ ¹æ¾ÈÀ» ¿ì¼±½ÃÇÏ°Ô µÇ¾ú½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ½À½Ä SCR ½Ã½ºÅÛ ºÎ¹®ÀÌ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ÇØ¾ç ¼±¹Ú¿ë ¼±ÅÃÀû Ã˸Šȯ¿ø(SCR) ½Ã½ºÅÛ ½ÃÀå¿¡¼­´Â ÀϹÝÀûÀ¸·Î °Ç½Ä SCR ½Ã½ºÅÛ Áß ½À½Ä SCR ½Ã½ºÅÛ ºÐ¾ß°¡ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÕ´Ï´Ù. Áú¼Ò»êÈ­¹°(NOx)Àº ½À½Ä SCR ½Ã½ºÅÛÀÇ ¹è±â È帧¿¡ ÁÖÀÔµÈ ¾×ü ½Ã¾à(ÀϹÝÀûÀ¸·Î ¾Ï¸ð´Ï¾Æ ¼ö¿ë¾×)¿¡ ÀÇÇØ ¹ÝÀÀÇÏ¿© ¹«ÇØÇÑ Áú¼Ò¿Í ¼öÁõ±â·Î ÀüȯµË´Ï´Ù. ÀÌ ½Ã½ºÅÛÀº ¼±¹Ú¿ë ¿£ÁøÀÇ ÀϹÝÀûÀÎ Á¶°ÇÀÎ ³·Àº ¹è±â ¿Âµµ¿¡¼­µµ Àß ÀÛµ¿Çϰí NOx Àú°¨ È¿À²ÀÌ ³ô±â ¶§¹®¿¡ ¼±¹Ú¿ë ÀÀ¿ë ºÐ¾ß¿¡¼­ ¼±È£µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ½À½Ä SCR ½Ã½ºÅÛÀº ´Ù¾çÇÑ ¿£Áø ºÎÇÏ ¹× ¿îÀü Á¶°Ç¿¡ ´ëÇÑ ¹è±â°¡½º Á¦¾î ÀûÀÀ¼ºÀÌ ¶Ù¾î³ª º¯È­ÇÏ´Â ÇØ¾ç ¼±¹ÚÀÇ ¿îÀü Ư¼º¿¡ °¡Àå ÀûÇÕÇÑ ½Ã½ºÅÛÀÔ´Ï´Ù.

»ý»ê Ç÷§Æû ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

»ý»ê Ç÷§Æû ºÐ¾ß´Â ÀϹÝÀûÀ¸·Î °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀÔ´Ï´Ù. »ý»ê Ç÷§ÆûÀº ¼®À¯ ¹× °¡½º ÀÚ¿øÀÇ ÃßÃâ, ó¸® ¹× Ž»ç¿¡ »ç¿ëµÇ´Â ÇØ¾ç ±¸Á¶¹°ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ Ç÷§Æû¿¡´Â ÀúÀå ÅÊÅ©, Àη °ÅÁÖÁö, ¼®À¯ ¹× °¡½º ó¸® ¹× ÀúÀå ÀåÄ¡¿Í °°Àº ¸¹Àº »ý»ê¿ë °Ç¹°ÀÌ Æ÷ÇԵǴ °æ¿ì°¡ ¸¹½À´Ï´Ù. »ý»ê Ç÷§ÆûÀº Áö¼ÓÀûÀÎ ¿î¿µ°ú źȭ¼ö¼Ò 󸮿¡ µû¸¥ ¸·´ëÇÑ ¹èÃâ·Î ÀÎÇØ ¾ö°ÝÇÑ È¯°æ ±ÔÁ¦¸¦ ¹Þ°í ÀÖ½À´Ï´Ù. µû¶ó¼­ Áú¼Ò»êÈ­¹°(NOx) ¹èÃâÀ» ÁÙÀÌ´Â SCR ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

ÃÖ´ë ½ÃÀå Á¡À¯À²À» °¡Áø Áö¿ª

ÇØ¾ç ¼±¹Ú¿ë ¼±ÅÃÀû Ã˸Šȯ¿ø(SCR) ½Ã½ºÅÛ ¾÷°è¿¡¼­ À¯·´ÀÌ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇϰí ÀÖ½À´Ï´Ù. À¯·´Àº ¾ö°ÝÇÑ È¯°æ¹ý°ú ¹èÃâ°¡½º °¨Ãà¿¡ ´ëÇÑ Àû±ØÀûÀÎ Á¢±Ù ¹æ½ÄÀ¸·Î ÀÔÁõµÈ ¹Ù¿Í °°ÀÌ, ÇØ»ó ¿îÇ×À» À§ÇÑ Ã»Á¤ ±â¼ú µµÀÔ¿¡ ÀÖ¾î ¼±µµÀûÀÎ ¿ªÇÒÀ» ÇØ¿Ô½À´Ï´Ù. ³ë¸£¿þÀÌ, ¿µ±¹, ³×´ú¶õµå µî EU ȸ¿ø±¹µéÀº Áú¼Ò»êÈ­¹°(NOx) ¹èÃâÀ» Å©°Ô ÁÙÀÌ´Â ±¹Á¦ÇØ»ç±â±¸ÀÇ 3Â÷ ±ÔÁ¦ µî ¾ö°ÝÇÑ ¹èÃâ ±ÔÁ¦¹ýÀ» ½ÃÇàÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÌ·¯ÇÑ ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©´Â À¯·´ ÇØ¿ª¿¡¼­ ¿îÇ×ÇÏ´Â ´Ù¾çÇÑ ÇØ¾ç Ç÷§Æû°ú ¼±¹Ú¿¡ SCR ½Ã½ºÅÛ µµÀÔÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª :

ÇØ¾ç ¼±¹Ú¿ë ¼±ÅÃÀû Ã˸Šȯ¿ø(SCR) ½Ã½ºÅÛ ½ÃÀå¿¡¼­ °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÑ Áö¿ªÀº ÀϹÝÀûÀ¸·Î ¾Æ½Ã¾ÆÅÂÆò¾çÀÔ´Ï´Ù. Áß±¹, ÀϺ», Çѱ¹, ½Ì°¡Æ÷¸£ µîÀÇ ±¹°¡¸¦ Æ÷ÇÔÇÏ´Â ÀÌ ¿ªµ¿ÀûÀÎ Áö¿ªÀº ±Þ¼ÓÇÑ »ê¾÷È­, µµ½ÃÈ­, ÀÎÇÁ¶ó ±¸ÃàÀÌ ÁøÇàµÇ¾î ÇØ¾ç Ȱµ¿ÀÇ »ó´çÇÑ ¼ºÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ °¢±¹ Á¤ºÎ°¡ ¹èÃâ·® °¨Ãà°ú ȯ°æ Áö¼Ó°¡´É¼º¿¡ ÁßÁ¡À» µÎ¸é¼­ ´ë±â ¿À¿°À» ÁÙÀ̰í ÇØ¾ç »ýŰ踦 º¸È£Çϱâ À§ÇØ ´õ¿í ¾ö°ÝÇÑ ¹ý±Ô¸¦ Á¦Á¤Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÇØ¾ç ¼±¹Ú, »ý»ê Ç÷§Æû ¹× Áö¿ø ¼±¹Ú¿¡ ´ëÇÑ SCR ½Ã½ºÅÛ ¼ö¿ä´Â ÀÌ Áö¿ªÀÇ ¹«¿ª ¹× °æÁ¦ ¼ºÀå¿¡ ´ëÇÑ ÇØ»ó ¿î¼Û ÀÇÁ¸µµ¿Í ȯ°æ ¹®Á¦¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁü¿¡ µû¶ó Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

¹«·á ¸ÂÃãÇü ¼­ºñ½º :

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.
  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀûÀÎ ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(ÃÖ´ë 3°³»ç)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ µû¸¥ ÁÖ¿ä ±¹°¡º° ½ÃÀå ÃßÁ¤Ä¡, ¿¹Ãø, CAGR(ÁÖ: Ÿ´ç¼º È®Àο¡ µû¶ó ´Ù¸§)
  • °æÀï»ç º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû ÀÔÁö, Àü·«Àû Á¦ÈÞ¸¦ ±â¹ÝÀ¸·Î ÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù
  • Á¶»ç ¼Ò½º
    • 1Â÷ Á¶»ç ¼Ò½º
    • 2Â÷ Á¶»ç ÀÚ·á
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ¿ëµµ ºÐ¼®
  • ÃÖÁ¾»ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå PorterÀÇ Five Forces ºÐ¼®

  • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
  • ¹ÙÀ̾îÀÇ ±³¼··Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô ÁøÃâ¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷°£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ ÇØ¾ç ¼±¹Ú¿ë ¼±ÅÃÀû Ã˸Šȯ¿ø(SCR) ½Ã½ºÅÛ ½ÃÀå : À¯Çüº°

  • ½À½Ä SCR ½Ã½ºÅÛ
  • °Ç½Ä SCR ½Ã½ºÅÛ
  • ±âŸ À¯Çü

Á¦6Àå ¼¼°èÀÇ ÇØ¾ç ¼±¹Ú¿ë ¼±ÅÃÀû Ã˸Šȯ¿ø(SCR) ½Ã½ºÅÛ ½ÃÀå : ¿ëµµº°

  • ½ÃÃß ¸®±×
  • »ý»ê Ç÷§Æû
  • Áö¿ø¼±
    • ¾ÞÄ¿ Çڵ鸵 ÅÂ±× ¼­ÇöóÀ̼±(AHTS)
    • Ç÷§Æû º¸±Þ¼±(PSV)
    • °í¼Ó Áö¿ø¼±(FSV)
    • ´Ù¸ñÀû Áö¿ø¼±(MPSV)
  • ±âŸ ¿ëµµ

Á¦7Àå ¼¼°èÀÇ ÇØ¾ç ¼±¹Ú¿ë ¼±ÅÃÀû Ã˸Šȯ¿ø(SCR) ½Ã½ºÅÛ ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • ¼®À¯ ¹× °¡½º ȸ»ç
  • ÇØ»ó dz·Â¹ßÀü¼Ò °³¹ßÀÚ
  • Á¤ºÎ±â°ü ¹× ±ÔÁ¦±â°ü
  • ¿¬±¸±â°ü ¹× ȯ°æ ´Üü
  • ±âŸ ÃÖÁ¾»ç¿ëÀÚ

Á¦8Àå ¼¼°èÀÇ ÇØ¾ç ¼±¹Ú¿ë ¼±ÅÃÀû Ã˸Šȯ¿ø(SCR) ½Ã½ºÅÛ ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦9Àå ÁÖ¿ä ¹ßÀü

  • °è¾à/ÆÄÆ®³Ê½Ê/Çù¾÷/ÇÕÀÛÅõÀÚ(JV)
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦10Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • Lindeberg-Anlagen GmbH
  • Hitachi Zosen Corporation
  • Nett Technologies, Inc
  • HHI Engine & Machinery
  • Johnson Matthey
  • Mitsubishi Heavy Industries, Ltd.
  • Ecospray Technologies S.r.l
  • Agriemach Ltd
  • DCL International LLC
  • Panasia Co., Ltd
  • H+H Engineering & Service GmbH
  • DEC Marine AB
  • Caterpillar
  • Industrial & Marine Silencers Ltd
  • Ceco Environmental
  • MAN Energy Solutions
  • Yara
  • Environmental Energy Services Corporation
LSH 24.05.10

According to Stratistics MRC, the Global Offshore Marine Selective Catalytic Reduction Systems Market is accounted for $278.70 million in 2023 and is expected to reach $496.53 million by 2030 growing at a CAGR of 8.6% during the forecast period. Advanced emission control technologies known as Offshore Marine Selective Catalytic Reduction (SCR) Systems are created especially for marine vessels that operate in offshore environments. Through a chemical reaction, these systems are designed to transform nitrogen oxide (NOx) emissions from marine engines into harmless nitrogen and water vapor, thereby reducing their harmful emissions. This conversion is aided by a catalyst in offshore SCR systems, and it usually entails injecting a urea-based solution into the exhaust stream.

According to the International Maritime Organization (IMO), the implementation of Offshore Marine Selective Catalytic Reduction (SCR) Systems is crucial for reducing nitrogen oxide (NOx) emissions from maritime vessels and ensuring compliance with global environmental standards.

Market Dynamics:

Driver:

Increasing conscience over environmental effects

An important factor influencing the offshore marine SCR systems market is growing public awareness of the negative environmental effects of maritime operations. This increased awareness, which is a result of worries about air pollution and how it affects marine ecosystems, has prompted pressure from a variety of sources, such as governments, environmental organizations, and the general public. Furthermore, due to this, shipowners and operators are realizing more and more how important it is to support sustainable practices in the offshore marine industry by investing in emission reduction technologies such as SCR systems and enhancing their corporate social responsibility (CSR) credentials.

Restraint:

High out-of-pocket costs

One major impediment to the offshore marine SCR systems market is the high initial investment required. Ship owners and operators are frequently discouraged by the high initial costs of acquiring SCR equipment, the costs of installation, and the possibility of vessel downtime during retrofitting. Additionally, smaller fleets and businesses with tighter budgets are especially affected by this financial burden, which makes them reluctant to adopt SCR technology even though it has long-term advantages for the environment and operations.

Opportunity:

Development of the offshore renewable energy sector

The offshore marine SCR systems market has a lot of potential due to the quick growth of the offshore renewable energy sector, which includes offshore wind farms and marine energy installations. Worldwide, the number of offshore renewable energy projects is increasing, which is driving up demand for marine infrastructure and support vessels to help with installation, maintenance, and operation. Moreover, vessels equipped with SCR technology provide an eco-friendly and sustainable means of maintaining offshore renewable energy installations while adhering to strict emission regulations. This puts SCR system providers in a position to profit from the expanding offshore renewable energy market.

Threat:

Market saturation and competitive pressure

The potential for market saturation and the growing level of competition pose a serious threat to the offshore marine SCR systems market. Numerous competitors offering SCR solutions have entered the market as a result of the maritime industry's growing emphasis on emissions reduction and environmental sustainability. SCR system suppliers may experience price wars, margin erosion, and decreased profitability as a result of this increased competition. Furthermore, differentiation becomes difficult as the market gets saturated with numerous vendors offering comparable products, which exacerbates competitive pressures and reduces market share.

Covid-19 Impact:

The market for offshore marine selective catalytic reduction (SCR) systems has been significantly impacted by the COVID-19 pandemic, which has also slowed investment in emissions reduction technologies, disrupted supply chains, and delayed ship retrofit projects. Due to travel restrictions and the economic slowdown brought on by the pandemic, there has been a decrease in maritime activity, which has impacted the market for SCR systems as vessel operators reduce operations to offset losses. Additionally, the degree of uncertainty surrounding the pandemic's duration and severity has increased market volatility, leading ship-owners to postpone capital expenditures and give priority to short-term cost-cutting measures over long-term sustainability initiatives.

The Wet SCR Systems segment is expected to be the largest during the forecast period

The wet SCR systems segment usually holds the largest market share of dry SCR systems in the offshore marine selective catalytic reduction (SCR) systems market. Nitrogen oxides (NOx) are reacted with by a liquid reagent (typically an aqueous ammonia solution) injected into the exhaust stream in wet SCR systems, converting them to innocuous nitrogen and water vapor. Because these systems can function well at lower exhaust temperatures, a common condition for marine engines, and have a higher efficiency in reducing NOx, they are preferred in marine applications. Moreover, wet SCR systems are also more adaptable in terms of emissions control over a broad range of engine loads and operating circumstances, which makes them ideal for the changing operating characteristics of offshore vessels.

The Production Platforms segment is expected to have the highest CAGR during the forecast period

Production platform segment usually show the highest CAGR. Production platforms are offshore structures used for gas and oil resource extraction, processing, and exploration. These platforms frequently contain a number of production buildings, such as storage tanks, personnel quarters, and units for processing and storing oil and gas. Production platforms are subject to strict environmental regulations because of their continuous operation and the significant emissions associated with hydrocarbon processing. This has led to a growing demand for SCR systems to reduce nitrogen oxide (NOx) emissions.

Region with largest share:

Europe holds the largest market share in the offshore marine selective catalytic reduction (SCR) systems industry. Europe has led the way in implementing clean technologies for maritime operations, as evidenced by its strict environmental laws and proactive approach to reducing emissions. EU member states like Norway, the UK, and the Netherlands have enforced stringent emission control laws, such as the Tier III regulations of the International Maritime Organization, which call for large cuts in nitrogen oxide (NOx) emissions. Additionally, the implementation of SCR systems on a variety of offshore platforms and vessels operating in European waters has been accelerated by this regulatory framework.

Region with highest CAGR:

Asia-Pacific usually has the highest CAGR in the offshore marine selective catalytic reduction (SCR) systems market. Significant growth in maritime activities is being driven by the rapid industrialization, urbanization, and infrastructure development occurring in this dynamic region, which includes countries like China, Japan, South Korea, and Singapore. As governments throughout the Asia-Pacific region place a greater emphasis on emissions reduction and environmental sustainability, stricter laws are being put in place to reduce air pollution and safeguard marine ecosystems. Moreover, the need for SCR systems in offshore vessels, production platforms, and support vessels is fueled by the region's reliance on maritime transportation for trade and economic growth, as well as the growing awareness of environmental issues.

Key players in the market

Some of the key players in Offshore Marine Selective Catalytic Reduction Systems market include Lindeberg-Anlagen GmbH, Hitachi Zosen Corporation, Nett Technologies, Inc, HHI Engine & Machinery, Johnson Matthey, Mitsubishi Heavy Industries, Ltd., Ecospray Technologies S.r.l, Agriemach Ltd, DCL International LLC , Panasia Co., Ltd, H+H Engineering & Service GmbH, DEC Marine AB, Caterpillar, Industrial & Marine Silencers Ltd , Ceco Environmental, MAN Energy Solutions, Yara and Environmental Energy Services Corporation.

Key Developments:

In February 2024, Mitsubishi Heavy Industries, Ltd. (MHI) has concluded a Nissay Positive Impact Finance agreement with Nippon Life Insurance Company. MHI Group, in response to the growing need to address the global challenge of climate change, in 2020, identified five material issues, including "Provide energy solutions to enable a carbon neutral world," as priority measures to contribute to solving societal issues and ensuring continued growth over the medium to long term.

In July 2023, Johnson Matthey (JM), a global leader in sustainable technologies, has today signed an investment agreement with the Jiading District in Shanghai to help accelerate the hydrogen economy in China. At a signing ceremony in Sonning, UK today, JM and the Shanghai Jiading District announced plans to build a new catalyst coated membrane (CCM) production facility, providing CCM production capability for multiple proton exchange membrane (PEM) fuel cell applications and PEM electrolysers.

In May 2023, Hexagon's Autonomy & Positioning division and Hitachi Zosen Corporation has announced that they have signed an agreement to bring the TerraStar-X Enterprise correction service to Japan. As a regional leader in the GNSS industry, Hitachi Zosen manages a nationwide network of 1,300 reference stations operated by the Geospatial Information Authority of Japan (GSI).

Types Covered:

  • Wet SCR Systems
  • Dry SCR Systems
  • Other Types

Applications Covered:

  • Drilling Rigs
  • Production Platforms
  • Support Vessels
  • Other Applications

End Users Covered:

  • Oil and Gas Companies
  • Offshore Wind Farms Developers
  • Government Agencies and Regulatory Bodies
  • Research Institutions and Environmental Organizations
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2021, 2022, 2023, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Offshore Marine Selective Catalytic Reduction Systems Market, By Type

  • 5.1 Introduction
  • 5.2 Wet SCR Systems
  • 5.3 Dry SCR Systems
  • 5.4 Other Types

6 Global Offshore Marine Selective Catalytic Reduction Systems Market, By Application

  • 6.1 Introduction
  • 6.2 Drilling Rigs
  • 6.3 Production Platforms
  • 6.4 Support Vessels
    • 6.4.1 Anchor Handling Tug Supply Vessels (AHTS)
    • 6.4.2 Platform Supply Vessels (PSV)
    • 6.4.3 Fast Support Vessels (FSV)
    • 6.4.4 Multi-Purpose Support Vessels (MPSV)
  • 6.5 Other Applications

7 Global Offshore Marine Selective Catalytic Reduction Systems Market, By End User

  • 7.1 Introduction
  • 7.2 Oil and Gas Companies
  • 7.3 Offshore Wind Farms Developers
  • 7.4 Government Agencies and Regulatory Bodies
  • 7.5 Research Institutions and Environmental Organizations
  • 7.6 Other End Users

8 Global Offshore Marine Selective Catalytic Reduction Systems Market, By Geography

  • 8.1 Introduction
  • 8.2 North America
    • 8.2.1 US
    • 8.2.2 Canada
    • 8.2.3 Mexico
  • 8.3 Europe
    • 8.3.1 Germany
    • 8.3.2 UK
    • 8.3.3 Italy
    • 8.3.4 France
    • 8.3.5 Spain
    • 8.3.6 Rest of Europe
  • 8.4 Asia Pacific
    • 8.4.1 Japan
    • 8.4.2 China
    • 8.4.3 India
    • 8.4.4 Australia
    • 8.4.5 New Zealand
    • 8.4.6 South Korea
    • 8.4.7 Rest of Asia Pacific
  • 8.5 South America
    • 8.5.1 Argentina
    • 8.5.2 Brazil
    • 8.5.3 Chile
    • 8.5.4 Rest of South America
  • 8.6 Middle East & Africa
    • 8.6.1 Saudi Arabia
    • 8.6.2 UAE
    • 8.6.3 Qatar
    • 8.6.4 South Africa
    • 8.6.5 Rest of Middle East & Africa

9 Key Developments

  • 9.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 9.2 Acquisitions & Mergers
  • 9.3 New Product Launch
  • 9.4 Expansions
  • 9.5 Other Key Strategies

10 Company Profiling

  • 10.1 Lindeberg-Anlagen GmbH
  • 10.2 Hitachi Zosen Corporation
  • 10.3 Nett Technologies, Inc
  • 10.4 HHI Engine & Machinery
  • 10.5 Johnson Matthey
  • 10.6 Mitsubishi Heavy Industries, Ltd.
  • 10.7 Ecospray Technologies S.r.l
  • 10.8 Agriemach Ltd
  • 10.9 DCL International LLC
  • 10.10 Panasia Co., Ltd
  • 10.11 H+H Engineering & Service GmbH
  • 10.12 DEC Marine AB
  • 10.13 Caterpillar
  • 10.14 Industrial & Marine Silencers Ltd
  • 10.15 Ceco Environmental
  • 10.16 MAN Energy Solutions
  • 10.17 Yara
  • 10.18 Environmental Energy Services Corporation
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦