![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1803040
¼¼°èÀÇ ½Äǰ Æó±â¹° PHA ½ÃÀå ¿¹Ãø(-2032³â) : À¯Çü, Á¦Á¶ ¹æ¹ý, ¿ø·á °ø±Þ¿ø, À¯Åë ä³Î, ¿ëµµ, ÃÖÁ¾ »ç¿ëÀÚ, Áö¿ªº° ºÐ¼®Food Waste PHA Market Forecasts to 2032 - Global Analysis By Type, Production Method, Feedstock Source, Distribution Channel, Application, End User and By Geography |
Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ½Äǰ Æó±â¹° PHA ½ÃÀå ±Ô¸ð´Â 2025³â 6,420¸¸ ´Þ·¯¸¦ Â÷ÁöÇϰí, 2032³â¿¡´Â 1¾ï 5,310¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ¿¹Ãø ±â°£ Áß CAGRÀº 13.2%¸¦ ³ªÅ¸³¾ Àü¸ÁÀÔ´Ï´Ù. ½Äǰ Æó±â¹° PHA´Â ¹Ì»ý¹° ¹ßÈ¿¿¡ ÀÇÇØ À¯±â ½Äǰ Æó±â¹°·ÎºÎÅÍ ÇÕ¼ºµÇ´Â Æú¸®ÇÏÀ̵å·Ï½Ã¾ËÄ«³ë¿¡ÀÌÆ®ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ¹ÙÀÌ¿ÀÆú¸®¸Ó´Â ¼®À¯ ±â¹Ý ÇÃ¶ó½ºÆ½À» ´ëüÇÒ ¼ö ÀÖ´Â Áö¼Ó°¡´ÉÇÑ ´ë¾ÈÀ¸·Î ÀÛ¿ëÇÏ¿© »ýºÐÇØ¼º°ú ȯ°æ ºÎÇÏ °¨¼Ò¸¦ ½ÇÇöÇÕ´Ï´Ù. Æó±âµÇ´Â ½ÄǰÀ» ±ÍÁßÇÑ ¿ø·á·Î º¯È¯ÇÔÀ¸·Î½á, ÀÌ °øÁ¤Àº ¼øÈ¯Çü °æÁ¦ÀÇ ¿øÄ¢À» ¼Æ÷Æ®ÇØ, ¸Å¸³Áö¿¡ÀÇ ÀÇÁ¸À» ÃÖ¼ÒÇÑÀ¸·Î ¾ïÁ¦ÇÕ´Ï´Ù.
¾òÀº PHA´Â Æ÷Àå, ³ó¾÷, ÀÇ·á ¿ëµµ¿¡ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ Á¢±Ù¹ýÀº Æó±â¹°ÀÇ °¡Ä¡È¿Í ±×¸° ÄɹÌÄÃÀ» ÅëÇÕÇÏ¿© ȯ°æ È¿À²ÀûÀÎ »ý»ê°ú ¼Òºñ ÈÄ ½Äǰ ÀÜ¿©¹°·ÎºÎÅÍÀÇ ÀÚ¿ø ȸ¼ö¸¦ ÃËÁøÇÕ´Ï´Ù.
À¯¿£È¯°æ°èȹÀÇ ½ÄǰÆó±âÁöÇ¥º¸°í¼ 2021¿¡ µû¸£¸é 2019³â¿¡´Â ¾à 9¾ï 3,100¸¸ÅæÀÇ ½ÄǰÀÌ Æó±âµÇ¾úÀ¸¸ç, ±× ³»¿ªÀº °¡Á¤ÀÌ 61%, ¿Ü½ÄÀÌ 26%, ¼Ò¸Å°¡ 13%¸¦ ³ªÅ¸³Â½À´Ï´Ù.
Áõ°¡ÇÏ´Â ºñ»ýºÐÇØ¼º ÇÃ¶ó½ºÆ½ Æó±â¹°ÀÇ ¼¼°è ¹®Á¦
ÀϹÝÀÇ ÇÃ¶ó½ºÆ½Àº ¼ö¼¼±â µ¿¾È »ýŰ迡 ³²¾Æ Àֱ⠶§¹®¿¡ ±ÔÁ¦ ±â°ü°ú »ê¾÷°è´Â Áö¼Ó °¡´ÉÇÑ ´ëüǰÀ» ¿ä±¸Çϰí ÀÖ½À´Ï´Ù. ½Äǰ Æó±â¹° PHA´Â À¯ÇØÇÑ ÀÜ·ù¹°À» ³²±âÁö ¾Ê°í ÀÚ¿¬½º·´°Ô ºÐÇØµÇ°í ¼³µæ·Â ÀÖ´Â ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ÀüȯÀº ƯÈ÷ Æ÷Àå ¹× ³ó¾÷ ºÐ¾ß¿¡¼ ¼ÒºñÀÚÀÇ Àǽİú ±â¾÷ÀÇ Áö¼Ó°¡´É¼º ¸ñÇ¥¿¡ ÀÇÇØ ´õ¿í °ÈµÇ°í ÀÖ½À´Ï´Ù. °¢±¹ Á¤ºÎ°¡ ÀÏȸ¿ë ÇÃ¶ó½ºÆ½ÀÇ ±ÔÁ¦¸¦ °ÈÇÏ´Â °¡¿îµ¥ ½Äǰ Æó±â¹° PHA ½ÃÀåÀº ±â¼¼¸¦ ´Ã¸®°í ÀÖ½À´Ï´Ù.
ºÐº° ¼öÁýÀÌ ºÒÃæºÐÇÑ ½Äǰ Æó±â¹°
µµ½Ã ¾²·¹±âÀÇ È帧¿¡´Â À¯±â¹°°ú ¹«±â¹°ÀÌ È¥ÀçÇϰí ÀÖ´Â °æ¿ì°¡ ¸¹¾Æ, PHA Á¦Á¶¿¡ »ç¿ëÇÒ ¼ö ÀÖ´Â ¿ø·áÀÇ ÃßÃâÀ» º¹ÀâÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù. À̰ÍÀº ¼öÀ²ÀÇ Ç°Áú¿¡ ¿µÇâÀ» ÁÙ»Ó¸¸ ¾Æ´Ï¶ó ó¸® ºñ¿ëµµ Áõ°¡½Ãŵ´Ï´Ù. Æó±â¹° ¼±º° ÀÎÇÁ¶ó³ª ½Ã¹Î Âü°¡°¡ ºÒÃæºÐÇÑ °Íµµ, È®À强ÀÇ ¹æÇذ¡ µÇ°í ÀÖ½À´Ï´Ù. Á¤Àû Á¤Ã¥ °³ÀÔ°ú Æó±â¹° °ü¸® ¹°·ù¿¡ ´ëÇÑ ÅõÀÚ°¡ ¾øÀ¸¸é ±ú²ýÇÑ À¯±â ±âÁú °ø±ÞÀº Àϰü¼ºÀÌ ºÎÁ·ÇÏ¿© ½ÃÀå ¼ºÀåÀÌ µÐȵ˴ϴÙ.
Æó±â¹° °ü¸®¿Í ¼øÈ¯ °æÁ¦ÀÇ ÅëÇÕ
PHA¸¦ ¼øÈ¯°æÁ¦ÀÇ Æ²¿¡ ÅëÇÕÇÏ´Â °ÍÀº Áö¼Ó°¡´ÉÇÑ Àç·á Çõ½Å¿¡ º¯ÈÀÇ ±âȸ¸¦ °¡Á®¿É´Ï´Ù. ½Äǰ Æó±â¹°À» °í°¡Ä¡ ¹ÙÀÌ¿ÀÇÃ¶ó½ºÆ½À¸·Î ÀüȯÇÔÀ¸·Î½á ±â¾÷Àº ¸Å¸³Áö ÀÇÁ¸¼ºÀ» ÁÙÀ̰í ÀÚ¿ø ·çÇÁ¸¦ ´ÝÀ» ¼ö ÀÖ½À´Ï´Ù. ÀÌ Á¢±Ù¹ýÀº ¼¼°è Áö¼Ó°¡´É¼º ¸ñÇ¥¿¡ ºÎÇÕÇϸç, ÁöÀÚü¿Í Á¦Á¶¾÷ü ¸ðµÎ¿¡°Ô °æÁ¦Àû Àμ¾Æ¼ºê¸¦ Á¦°øÇÕ´Ï´Ù. ¶ÇÇÑ Æó±â¹° 󸮾÷ü, »ý¸í°øÇбâ¾÷, Æ÷Àå±â¾÷ °£ÀÇ Àü·«Àû Çù¾÷ÀÌ ¼½Å͸¦ ³Ñ¾î ä¿ëÀ» °¡¼ÓÈÇϰí ÀÖ½À´Ï´Ù.
ºÒ¸®ÇÑ Á¤Ã¥ º¯°æ À§Çè
ÇöÀçÀÇ ±ÔÁ¦´Â »ýºÐÇØ¼º ¹°Áú¿¡ À¯¸®ÇÏÁö¸¸ Á¤Ã¥°ú º¸Á¶±Ý Á¦µµÀÇ ±Þ°ÝÇÑ º¯È´Â PHA ½ÃÀåÀ» ºÒ¾ÈÁ¤ÇÏ°Ô ¸¸µé ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, Á¤ºÎ°¡ ´Ù¸¥ ¹ÙÀÌ¿À Æú¸®¸Ó¸¦ ¼±È£Çϰųª Æó±â¹°¿¡¼ ¹ÙÀÌ¿ÀÇÃ¶ó½ºÆ½À¸·ÎÀÇ Àüȯ¿¡ ´ëÇÑ Àμ¾Æ¼ºê¸¦ ÁÙÀ̸é ÅõÀÚ È帧ÀÌ ¹Ù²ð ¼ö ÀÖ½À´Ï´Ù. °Ô´Ù°¡ ÀÌ ºÐ¾ß´Â Á¤Ã¥ Áö¿ø¿¡ ÀÇÁ¸Çϱ⠶§¹®¿¡ ƯÈ÷ ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©ÀÌ ¾ÆÁ÷ ¹ßÀü µµ»ó¿¡ ÀÖ´Â ½ÅÈï ½ÃÀå¿¡¼´Â Á¤Ä¡¿Í °æÁ¦ÀÇ º¯µ¿¿¡ Ãë¾àÇÕ´Ï´Ù.
COVID-19ÀÇ ´ëÀ¯ÇàÀº ½Äǰ Æó±â¹° PHA ½ÃÀå¿¡ °úÁ¦¿Í ±âȸ¸¦ ¸ðµÎ °¡Á®¿Ô½À´Ï´Ù. Æó±â¹° ¼öÁý°ú »ê¾÷ ¹ßÈ¿ ÀÛ¾÷ÀÇ Ãʱâ È¥¶õÀº °ø±Þ¸ÁÀÇ º´¸ñÀ¸·Î À̾îÁ® »ý»êÁֱ⸦ Áö¿¬½ÃÄ×½À´Ï´Ù. ±×·¯³ª À¯Çà±â°£ µ¿¾È ÀÏȸ¿ë ÇÃ¶ó½ºÆ½ÀÌ ±ÞÁõÇ߱⠶§¹®¿¡ »ýºÐÇØ¼º ´ëüǰÀÇ Çʿ伺ÀÌ ±ä±Þ¼ºÀ» Áõ°¡½ÃÄ×½À´Ï´Ù. Á¤ºÎ¿Í ±â¾÷Àº Æ÷Àå Àü·«À» Àç°ËÅäÇϱ⠽ÃÀÛÇßÀ¸¸ç, Àç»ý °¡´ÉÇÑ Æó±â¹° PHA¿¡ ´ëÇÑ °ü½ÉÀ» ³ô¿´½À´Ï´Ù. ÆÒµ¥¹ÍÀº ºÐ»ê Æó±â¹° ó¸®¿Í ¹Ì»ý¹° ¹è¾ç ÃÖÀûÈÀÇ ±â¼ú Çõ½ÅÀ» ÃËÁøÇϰí Àå±â ¼ºÀåÀÇ ±âÃʸ¦ ±¸ÃàÇß½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È Á߼⠱æÀÌ(MCL) PHA ºÎ¹®ÀÌ ÃÖ´ë°¡ µÉ °ÍÀ¸·Î ¿¹»ó
Á߼⠱æÀÌ(MCL) PHA´Â ¶Ù¾î³ ±â°èÀû Ư¼º°ú ¿ëµµÀÇ ´Ù¾ç¼ºÀ¸·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÇØ¾ç°ú Åä¾ç ȯ°æ¿¡¼ ºÐÇØÇÏ´Â ´É·ÂÀº ȯ°æ¿¡ ¹Î°¨ÇÑ Áö¿ª¿¡¼ÀÇ ¸Å·ÂÀ» ³ôÀÔ´Ï´Ù. ¹Ì»ý¹° °øÇÐÀÇ Çõ½ÅÀº ½Äǰ Æó±â¹°À» ±âÁú·Î ÇÏ´Â MCLÀÇ ¼öÀ²À» °³¼±ÇÏ¿© »ó¾÷Àû ÀÌ¿ë °¡´É¼ºÀ» ´õ¿í ³ô¿©ÁÝ´Ï´Ù. »ê¾÷°è°¡ °í¼º´É ¹ÙÀÌ¿ÀÇÃ¶ó½ºÆ½À» ¿ä±¸ÇÏ´Â °¡¿îµ¥, MCL PHA°¡ ¼±È£µÇ´Â ¿É¼ÇÀ¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È È¥ÇÕ ¹Ì»ý¹° ¹è¾ç ºÎ¹®ÀÌ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È È¥ÇÕ ¹Ì»ý¹° ¹è¾ç ºÎ¹®Àº ºñ¿ë È¿À²¼º°ú ÀÌÁ¾ Æó±â¹° È帧¿¡ ´ëÇÑ ÀûÀÀ¼ºÀ¸·Î ÀÎÇØ °¡Àå ³ôÀº ¼ºÀå·üÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¼ø¼ö ¹è¾ç°ú ´Þ¸® È¥ÇÕ ÄÁ¼Ò½Ã¾öÀº ´Ù¾çÇÑ ¿ø·á Á¶¼ºÀ¸·Î ¼ºÀåÇÒ ¼ö ÀÖÀ¸¹Ç·Î ½ÇÁ¦ ½Äǰ Æó±â¹° ½Ã³ª¸®¿À¿¡ ÀÌ»óÀûÀÔ´Ï´Ù. ÀÌ ºÎ¹®Àº Á¤Á¦µÈ ±âÁú¿¡ ÀÇÁ¸ÇÏÁö ¾Ê°í PHA »ý»êÀ» È®ÀåÇÏ´Â °ÍÀ» ¸ñÇ¥·Î ÇÏ´Â ½ÅÈï ±â¾÷°ú ÁöÀÚüÀÇ Æó±â¹° 󸮾÷üµé »çÀÌ¿¡¼ Àα⸦ ²ø°í ÀÖ½À´Ï´Ù. È¥ÇÕ ¹è¾çÀÇ À¯¿¬¼º°ú ź·Â¼ºÀº ¾÷°èÀÇ Áß¿äÇÑ ¼ºÀå ¿£ÁøÀ¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì´Â °ß°íÇÑ Æó±â¹° °ü¸® ÀÎÇÁ¶ó¿Í °·ÂÇÑ ±ÔÁ¦¸¦ µÞ¹ÞħÇϰí ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ Áö¿ª¿¡¼´Â Áö¼Ó °¡´ÉÇÑ Æ÷Àå°ú ±â¾÷ÀÇ ESG¿¡ ´ëÇÑ ³ë·ÂÀÌ Á߽õǰí ÀÖÀ¸¸ç, ½Äǰ ¹× ½Äǰ ¼½ÅÍ Àüü¿¡¼ ä¿ëÀÌ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù. ¼±µµÀû ÀÎ »ý¸í °øÇРȸ»ç¿Í Çмú ±â°üÀº ÆÄÀÏ·µ ÇÁ·ÎÁ§Æ® ¹× »ó¾÷ ±Ô¸ðÀÇ ¹ßÈ¿ ½Ã¼³¿¡ ÅõÀÚÇÕ´Ï´Ù. °Ô´Ù°¡ È£ÀÇÀûÀÎ Á¤Ã¥ Ʋ°ú ±â¼úÀû ¼º¼÷µµ´Â ºÏ¹Ì¸¦ ½ÃÀåÀÇ Áö¹èÀû ¼¼·ÂÀ¸·Î »ï°í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº µµ½ÃÈÀÇ ÁøÀü, ½Äǰ °¡°ø »ê¾÷ÀÇ È®´ë, ȯ°æ ÀÇ½Ä Áõ°¡¿¡ ÈûÀÔ¾î °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Áß±¹, Àεµ, Àεµ³×½Ã¾Æ¿Í °°Àº ±¹°¡¿¡¼´Â ´ë·®ÀÇ ½Äǰ Æó±â¹°ÀÌ ¹ß»ýÇÏ¿© PHA »ý»êÀ» À§ÇÑ Ç³ºÎÇÑ ¿ø·á°¡ »ý»êµÇ°í ÀÖ½À´Ï´Ù. Àúºñ¿ë ¹ßÈ¿ ±â¼ú°ú Áö¿ª Çù·Â °ü°èÀÇ Çõ½ÅÀº È®À强À» ´õ¿í Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀÇ ¿ªµ¿ÀûÀÎ ±ÔÁ¦ »óȲ°ú ¼ÒºñÀÚ ÀÇ½Ä Áõ°¡´Â ¿¹Ãø ±â°£ µ¿¾È ³ôÀº ¼ºÀå·üÀ» À¯ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
According to Stratistics MRC, the Global Food Waste PHA Market is accounted for $64.2 million in 2025 and is expected to reach $153.1 million by 2032 growing at a CAGR of 13.2% during the forecast period. Food wastes PHA are polyhydroxyalkanoates synthesized from organic food waste through microbial fermentation. These biopolymers serve as sustainable alternatives to petroleum-based plastics, offering biodegradability and reduced environmental impact. By converting discarded food into valuable raw material, this process supports circular economy principles and minimizes landfill dependency. The resulting PHAs can be used in packaging, agriculture, and medical applications. This approach integrates waste valorization with green chemistry, promoting eco-efficient production and resource recovery from post-consumer food residues.
According to the United Nations Environment Programme's Food Waste Index Report 2021 approximately 931 million tonnes of food were wasted in 2019, with households accounting for 61%, food service 26%, and retail 13%.
Increasing global problem of non-biodegradable plastic waste
Conventional plastics, which linger in ecosystems for centuries, have prompted regulatory bodies and industries to seek sustainable substitutes. PHAs derived from food waste offer a compelling solution, decomposing naturally without leaving harmful residues. This shift is further supported by consumer awareness and corporate sustainability goals, especially in packaging and agriculture sectors. As governments tighten restrictions on single-use plastics, the market for food waste-based PHAs is gaining momentum.
Insufficient segregated food-waste collection
Municipal waste streams often mix organic and inorganic materials, complicating the extraction of usable feedstock for PHA production. This not only affects yield quality but also increases processing costs. Inadequate infrastructure and public participation in waste sorting further hinder scalability. Without targeted policy interventions and investment in waste management logistics, the supply of clean organic substrates will remain inconsistent, slowing market growth.
Waste management and circular economy integration
The integration of PHAs into circular economy frameworks presents a transformative opportunity for sustainable material innovation. By converting food waste into high-value bioplastics, companies can reduce landfill dependency and close resource loops. This approach aligns with global sustainability targets and offers economic incentives for municipalities and manufacturers alike. Moreover strategic collaborations between waste processors, biotech firms, and packaging companies are accelerating adoption across sectors.
Risk of unfavorable policy changes
While current regulations favor biodegradable materials, abrupt shifts in policy or subsidy structures could destabilize the PHA market. For instance, if governments prioritize other bio-based polymers or reduce incentives for waste-to-bioplastic conversion, investment flows may be redirected. Additionally, the sector's reliance on policy support makes it vulnerable to political and economic fluctuations, especially in emerging markets where regulatory frameworks are still evolving.
The COVID-19 pandemic introduced both challenges and opportunities for the Food Waste PHA market. Initial disruptions in waste collection and industrial fermentation operations led to supply chain bottlenecks, delaying production cycles. However, as single-use plastics surged during the pandemic, the need for biodegradable alternatives became more urgent. Governments and corporations began reevaluating packaging strategies, boosting interest in PHAs derived from renewable waste. The pandemic catalyzed innovation in decentralized waste processing and microbial culture optimization, laying the groundwork for long-term growth.
The medium chain length (MCL) PHAs segment is expected to be the largest during the forecast period
The medium chain length (MCL) PHAs segment is expected to account for the largest market share during the forecast period due to its superior mechanical properties and versatility across applications. Their ability to degrade in marine and soil environments adds to their appeal in eco-sensitive regions. Innovations in microbial engineering are improving MCL yield from food waste substrates, further strengthening their commercial viability. As industries seek high-performance bioplastics, MCL PHAs are emerging as the preferred choice.
The mixed microbial culture segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the mixed microbial culture segment is predicted to witness the highest growth rate driven by their cost-effectiveness and adaptability to heterogeneous waste streams. Unlike pure cultures, mixed consortia can thrive on variable feedstock compositions, making them ideal for real-world food waste scenarios. This segment is gaining traction among startups and municipal waste processors aiming to scale PHA production without relying on refined substrates. The flexibility and resilience of mixed cultures position them as a key growth engine for the industry.
During the forecast period, the North America region is expected to hold the largest market share supported by robust waste management infrastructure and strong regulatory backing. The region's emphasis on sustainable packaging and corporate ESG commitments is driving adoption across food and beverage sectors. Leading biotech firms and academic institutions are investing in pilot projects and commercial-scale fermentation facilities. Additionally, Favorable policy frameworks and technological maturity make North America a dominant force in the market.
Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR fueled by rising urbanization, expanding food processing industries, and increasing environmental awareness. Countries like China, India, and Indonesia are generating vast quantities of food waste, creating abundant feedstock for PHA production. Innovations in low-cost fermentation technologies and regional collaborations are further enhancing scalability. The region's dynamic regulatory landscape and growing consumer consciousness are expected to sustain high growth rates throughout the forecast period.
Key players in the market
Some of the key players in Food Waste PHA Market include Danimer Scientific, RWDC Industries, Newlight Technologies, Kaneka Corporation, Bio-on SpA, Full Cycle Bioplastics, Genecis Bioindustries, Bluepha Co. Ltd., TianAn Biologic Materials Co., Ltd., Shenzhen Ecomann Biotechnology Co., Ltd., PHB Industrial S.A., CJ CheilJedang Corp., TerraVerdae Bioworks, Paques Biomaterials, PolyFerm Canada, Biomer, Tepha Inc., Yield10 Bioscience, Inc., P&G Chemicals, and Mango Materials.
In July 2025, Teknor Apex acquired Danimer Scientific, with the acquisition announced Danimer will continue operating under its own name but now benefits from Teknor's scale and resources to advance biopolymer commercialization.
In June 2025, Newlight's AirCarbon gaining traction through brand collaborations (like Nike, H&M, Shake Shack, Ben & Jerry's) and unveiling plans for a $1.1 billion manufacturing facility in Manitoba, Canada. The coverage underscores their scaling strategy-both in production capacity and adoption across consumer goods and packaging sectors.