![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1564013
¼¼°èÀÇ ¿¬·áÀüÁö ÀÚµ¿Â÷ ½ÃÀåFuel Cell Vehicle |
¿¬·áÀüÁö ÀÚµ¿Â÷ ¼¼°è ½ÃÀåÀº 2030³â±îÁö 117¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù
2023³â 26¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¿¬·áÀüÁö ÀÚµ¿Â÷ ¼¼°è ½ÃÀåÀº 2023³âºÎÅÍ 2030³â±îÁö ¿¬Æò±Õ 23.9% ¼ºÀåÇÏ¿© 2030³â¿¡´Â 117¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. º» º¸°í¼¿¡¼ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ½Â¿ëÂ÷ ÃÖÁ¾ ¿ëµµ ºÎ¹®Àº CAGR 24.6%¸¦ ±â·ÏÇÏ¿© ºÐ¼® ±â°£ Á¾·á ½ÃÁ¡¿¡ 76¾ï ´Þ·¯¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. »ó¿ëÂ÷ ÃÖÁ¾ ¿ëµµ ºÎ¹®Àº ºÐ¼® ±â°£ µ¿¾È CAGR 26.1%ÀÇ ¼ºÀå·üÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ÃßÁ¤µË´Ï´Ù.
¹Ì±¹ ½ÃÀåÀº 6¾ï 6,530¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 30.1%·Î ¼ºÀå Àü¸Á
¹Ì±¹ÀÇ ¿¬·áÀüÁö ÀÚµ¿Â÷ ½ÃÀå ±Ô¸ð´Â 2023³â 6¾ï 6,530¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 33¾ï ´Þ·¯ ±Ô¸ð¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, 2023-2030³âÀÇ ºÐ¼® ±â°£ µ¿¾È 30.1%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ´Ù¸¥ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ª ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ µ¿¾È °¢°¢ 18.2%¿Í 21.2%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. À¯·´¿¡¼´Â µ¶ÀÏÀÌ ¾à 19.8%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¼¼°è ¿¬·áÀüÁö ÀÚµ¿Â÷ ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ ¿ä¾à
¿¬·áÀüÁö ÀÚµ¿Â÷´Â ¾î¶»°Ô Áö¼Ó °¡´ÉÇÑ ±³ÅëÀÇ ¹Ì·¡¸¦ ÁÖµµÇϰí Àִ°¡?
¿¬·áÀüÁö ÀÚµ¿Â÷(FCV)´Â ±âÁ¸ÀÇ ³»¿¬±â°ü ÀÚµ¿Â÷¸¦ ´ëüÇÒ ¼ö ÀÖ´Â ±ú²ýÇϰí È¿À²ÀûÀÎ ¹«°øÇØ ´ë¾ÈÀ¸·Î ¶°¿À¸£°í ÀÖÀ¸¸ç, Áö¼Ó°¡´ÉÇÑ ±³ÅëÀÇ ¹Ì·¡¿¡¼ Áß¿äÇÑ ±â¼ú·Î ºÎ»óÇϰí ÀÖÀ¸¸ç, ¼öÁõ±â¿Í ¿À» ¹ß»ý½Ãų »ÓÀÔ´Ï´Ù. ÀÌ ±â¼úÀº Àü ¼¼°è Á¤ºÎ¿Í »ê¾÷°è°¡ ¿Â½Ç°¡½º ¹èÃâ·®À» ÁÙÀÌ°í º¸´Ù Áö¼Ó °¡´ÉÇÑ ¸ðºô¸®Æ¼ ÇüÅ·ÎÀÇ Àüȯ¿¡ ÃÊÁ¡À» ¸ÂÃß¸é¼ ´õ¿í ź·ÂÀ» ¹Þ°í ÀÖ½À´Ï´Ù. ÃæÀü½Ä ¹èÅ͸®¿¡ ÀÇÁ¸ÇÏ´Â ¹èÅ͸® Àü±âÂ÷(BEV)¿Í ´Þ¸®, FCV´Â ªÀº ÁÖÀ¯ ½Ã°£°ú ±ä ÁÖÇà°Å¸®ÀÇ ÀÌÁ¡À» °¡Áö°í ÀÖ¾î Àå°Å¸® À̵¿ ¹× »ó¾÷Àû ¿ëµµ·Î ƯÈ÷ ¸Å·ÂÀûÀÔ´Ï´Ù.
¿¬·áÀüÁö ÀÚµ¿Â÷ÀÇ ¸Å·ÂÀº ¹«°øÇػӸ¸ ¾Æ´Ï¶ó ´ëÇü Æ®·°, ¹ö½º, ÇØ»ó ¿î¼Û µî Àü±âȰ¡ ¾î·Á¿î ¿î¼Û ºÎ¹®ÀÇ Å»Åº¼ÒÈ¿¡ ±â¿©ÇÒ ¼ö ÀÖ´Ù´Â Á¡. ÀÌ¹Ì ¿©·¯ ÀÚµ¿Â÷ Á¦Á¶¾÷ü°¡ FCV¸¦ äÅÃÇϰí ÀÖÀ¸¸ç, µµ¿äŸ ¹Ì¶óÀÌ, Çö´ë ³Ø½î µîÀÇ ¸ðµ¨ÀÌ ½ÃÀåÀ» ¼±µµÇϰí ÀÖ½À´Ï´Ù. ½ÃÀåÀ» ¼±µµÇϰí ÀÖ½À´Ï´Ù. À̵é Â÷·®Àº Á¶¿ëÈ÷ ÀÛµ¿Çϰí À¯ÇØÇÑ ¹è±â°¡½º¸¦ ¹èÃâÇÏÁö ¾ÊÀ¸¸ç, °³ÀÎ ¹× »ó¾÷¿ë ¿î¼ÛÀÇ ¹Ì·¡¸¦ À籸¼ºÇÒ ¼ö ÀÖ´Â ÀáÀç·ÂÀ» °¡Áö°í ÀÖ½À´Ï´Ù. ¼ö¼Ò »ý»ê ¹× ¿¬·á °ø±Þ ÀÎÇÁ¶ó°¡ °è¼Ó È®´ëµÊ¿¡ µû¶ó, FCV´Â ȼ® ¿¬·á¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÁÙÀÌ°í ´õ ±ú²ýÇϰí Áö¼Ó °¡´ÉÇÑ ¿¡³ÊÁö¿ø¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ ´ëÀÀÇÒ ¼ö ÀÖ´Â À¯¸ÁÇÑ ¼Ö·ç¼ÇÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù.
¿¬·áÀüÁö ÀÚµ¿Â÷ °³¹ßÀ» °¡¼ÓÈÇϰí ÀÖ´Â ±â¼ú ¹ßÀüÀº ¹«¾ùÀϱî?
¿©·¯ °¡Áö ±â¼úÀû Áøº¸°¡ ¿¬·áÀüÁö ÀÚµ¿Â÷ÀÇ °³¹ß°ú º¸±ÞÀ» °¡¼ÓÈÇÏ¿© º¸´Ù È¿À²ÀûÀÌ°í ½Å·ÚÇÒ ¼ö ÀÖÀ¸¸ç »ó¾÷ÀûÀ¸·Î ½ÇÇö °¡´ÉÇÑ ¿¬·áÀüÁö ÀÚµ¿Â÷ÀÇ °³¹ßÀ» °¡¼ÓÈÇϰí ÀÖ½À´Ï´Ù. Áß¿äÇÑ ±â¼ú Çõ½Å Áß Çϳª´Â ¿¬·áÀüÁöÀÇ È¿À²°ú ³»±¸¼ºÀ» Çâ»ó½ÃŰ´Â °ÍÀÔ´Ï´Ù. ÃֽŠ¿¬·áÀüÁö, ƯÈ÷ °íºÐÀÚ °íºÐÀÚ(PEM) ¿¬·áÀüÁö´Â ¼ö¼Ò¸¦ Àü±â·Î º¯È¯ÇÏ´Â È¿À²ÀÌ Çâ»óµÇ¾î FCVÀÇ ÁÖÇà°Å¸®¸¦ ¿¬ÀåÇÏ°í ¿¬ºñ¸¦ °³¼±ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀº ¹é±Ý°ú °°Àº »õ·Î¿î Ã˸ŠÀç·áÀÇ »ç¿ë°ú ¿¬·áÀüÁöÀÇ Å©±â¿Í ºñ¿ëÀ» ÁÙÀÌ¸é¼ ¿¡³ÊÁö ¹Ðµµ¸¦ ³ôÀÌ´Â µ¥ µµ¿òÀÌ µÇ´Â °³¼±µÈ ¸· ¹× Àü±Ø ¼³°è¸¦ ÅëÇØ ÀÌ·ç¾îÁ³½À´Ï´Ù.
¶Ç ´Ù¸¥ Å« ¹ßÀüÀº ¼ö¼Ò ÀúÀå ±â¼ú·Î, FCV¿¡¼ ¼ö¼Ò´Â ÀϹÝÀûÀ¸·Î °í¾Ð ÅÊÅ©¿¡ ÀúÀåµÇÁö¸¸, Àç·á °úÇÐÀÇ »õ·Î¿î ¹ßÀüÀ¸·Î ¼ö¼Ò¸¦ º¸´Ù ¾ÈÀüÇϰí È¿À²ÀûÀ¸·Î ÀúÀåÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. °æ·® °í¾Ð ¼ö¼Ò ÅÊÅ©¿ë º¹ÇÕÀç·áÀÇ Çõ½ÅÀ¸·Î Â÷·® ¹«°Ô¸¦ Å©°Ô ´Ã¸®Áö ¾Ê°íµµ ÀúÀå ¿ë·®À» ´Ã¸± ¼ö ÀÖ¾î FCVÀÇ ½Ç¿ë¼ºÀÌ ´õ¿í ³ô¾ÆÁ³½À´Ï´Ù. ¿¬±¸ÀÚµéÀº ¶ÇÇÑ ¼ö¼Ò¸¦ ±Ý¼Ó¼ö¼Òȹ°°ú °°Àº ¹°Áú¿¡ Èí¼ö½ÃŰ´Â °íü ¼ö¼Ò ÀúÀå°ú °°Àº »õ·Î¿î ¼ö¼Ò ÀúÀå ¹æ¹ýÀ» ¸ð»öÇϰí ÀÖÀ¸¸ç, ÀÌ´Â ´õ ³ôÀº ¿¬·á ¹Ðµµ¿Í ´õ ¾ÈÀüÇÑ ÀúÀåÀ» °¡´ÉÇÏ°Ô ÇÒ ¼ö ÀÖ½À´Ï´Ù.
¿¬·áÀüÁö ½Ã½ºÅÛ ÅëÇÕµµ Å« ÁøÀüÀ» º¸À̰í ÀÖ´Â ºÐ¾ßÀÔ´Ï´Ù. ÷´Ü ÆÄ¿öÆ®·¹ÀÎ ¼³°è¸¦ ÅëÇØ ¿¬·áÀüÁö¿Í Àü±â ¸ðÅÍ ¹× ¹èÅ͸®¸¦ ¿øÈ°ÇÏ°Ô ÅëÇÕÇÒ ¼ö ÀÖ°Ô µÇ¾î Àüü Â÷·® ¼º´ÉÀÌ Çâ»óµÇ°í ÀÖ½À´Ï´Ù. ¿¬·áÀüÁö¿Í ¼ÒÇü ¹èÅ͸®¸¦ °áÇÕÇÑ ÇÏÀ̺긮µå ½Ã½ºÅÛÀº ¿¡³ÊÁö Ȱ¿ëÀ» ÃÖÀûÈÇϱâ À§ÇØ °³¹ßµÇ¾î µÎ ±â¼úÀÇ ÀåÁ¡À» Â÷·®¿¡ Á¦°øÇÕ´Ï´Ù. À̸¦ ÅëÇØ FCV´Â Á¦µ¿ ¹× ÁÖÇà Áß ¹ß»ýÇÏ´Â À׿© ¿¡³ÊÁö¸¦ ¹èÅ͸®¿¡ ÀúÀåÇϰí, °¡¼Ó ¹× ¿À¸£¸·±æ ÁÖÇà ½Ã ÀÌ ¿¡³ÊÁö¸¦ »ç¿ëÇÏ¿© Ãß°¡ Àü·ÂÀ» °ø±ÞÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀü°ú ÇÔ²² ¿¬·áÀüÁö ÀÚµ¿Â÷´Â ¹èÅ͸® Àü±âÂ÷ ¹× ³»¿¬±â°ü Â÷·®°úÀÇ °æÀïÀ» °ÈÇÏ¿© ¿î¼Û ºÎ¹®¿¡ ³Î¸® äÅÃµÉ ¼ö ÀÖ´Â ±æÀ» ¿¾îÁÖ°í ÀÖ½À´Ï´Ù.
¿¬·áÀüÁö ÀÚµ¿Â÷´Â ¾î¶»°Ô ¹«°øÇØ ±³Åë¼ö´Ü ÃßÁøÀ» µÞ¹ÞħÇϰí Àִ°¡?
¿¬·áÀüÁö ÀÚµ¿Â÷´Â Àü ¼¼°è ¹«°øÇØ ±³Åë¼ö´Ü ÃßÁø¿¡ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖÀ¸¸ç, ´ë±â¿À¿°À» ÁÙÀÌ°í ±âÈÄ º¯È¿¡ ¸Â¼ ½Î¿ì´Â µ¥ ±â¿©Çϰí ÀÖ½À´Ï´Ù. Àü ¼¼°è ±¹°¡¿Í µµ½Ã°¡ ź¼Ò ¹èÃâ·® °¨ÃàÀ» À§ÇÑ ¾ß½ÉÂù ¸ñÇ¥¸¦ ¼³Á¤ÇÏ´Â °¡¿îµ¥, FCV´Â ƯÈ÷ Àå°Å¸® À̵¿ ¹× ´ëÇü ¿î¼Û°ú °°ÀÌ ¹èÅ͸® Àü±âÂ÷°¡ ÇѰ谡 ÀÖ´Â ºÐ¾ß¿¡¼ ¸ñÇ¥¸¦ ´Þ¼ºÇÒ ¼ö ÀÖ´Â Çö½ÇÀûÀÎ ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù. ºÎ»ý¼º¹°Àº ¼öÁõ±â»ÓÀ̱⠶§¹®¿¡ °¡¼Ö¸°À̳ª µðÁ©À» ¿¬·á·Î ÇÏ´Â ±âÁ¸ ÀÚµ¿Â÷¸¦ ´ëüÇÒ ¼ö Àִ ģȯ°æ ÀÚµ¿Â÷ÀÔ´Ï´Ù. Áú¼Ò»êȹ°(NOx) ¹× ÀÔÀÚ»ó ¹°Áú°ú °°Àº À¯ÇØÇÑ ¿À¿°¹°ÁúÀ» Á¦°ÅÇÔÀ¸·Î½á FCV´Â ƯÈ÷ Àα¸ ¹Ðµµ°¡ ³ôÀº µµ½Ã Áö¿ª¿¡¼ ±ú²ýÇÑ °ø±â¿Í °øÁß º¸°Ç °³¼±¿¡ ±â¿©ÇÕ´Ï´Ù.
¿¬·áÀüÁö ÀÚµ¿Â÷ÀÇ ¶Ç ´Ù¸¥ Å« ÀåÁ¡Àº ´ëÇü Æ®·°, ¹ö½º, »ê¾÷±â°è µî Àü±âȰ¡ ¾î·Á¿î ºÐ¾ßÀÇ Å»Åº¼Òȸ¦ Áö¿øÇÒ ¼ö ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ¹èÅ͸® Àü±âÂ÷´Â ´Ü°Å¸® À̵¿°ú ¼ÒÇü ¿ëµµ¿¡ ÀûÇÕÇÏÁö¸¸, FCV´Â ÁÖÇà°Å¸®°¡ ±æ°í ¿¬·á º¸±ÞÀÌ ºü¸£±â ¶§¹®¿¡ Àå°Å¸® ¿î¼Û, ȹ° ¿î¼Û, ´ëÁß±³Åë ½Ã½ºÅÛ¿¡ ÀûÇÕÇÕ´Ï´Ù. ¼ö¼Ò ÃæÀü¼Ò¿¡¼´Â ´Ü ¸î ºÐ ¸¸¿¡ °¡¼Ö¸° Â÷·®°ú µ¿ÀÏÇÑ ¾çÀÇ ¼ö¼Ò¸¦ ÃæÀüÇÒ ¼ö Àֱ⠶§¹®¿¡ FCV´Â ÃæÀü ½Ã°£ÀÌ ±ä ¹èÅ͸® Àü±âÀÚµ¿Â÷º¸´Ù ºÐ¸íÈ÷ À¯¸®ÇÕ´Ï´Ù. ÀÌ´Â ´Ù¿îŸÀÓ¿¡ ºñ¿ëÀÌ ¸¹ÀÌ µé°í Â÷·® °¡µ¿·üÀÌ ³ôÀº ¹°·ù ¹× ȹ° ¿î¼Û°ú °°Àº ºÐ¾ß¿¡¼ ƯÈ÷ Áß¿äÇÕ´Ï´Ù.
¿¬·áÀüÁö ÀÚµ¿Â÷ÀÇ È¯°æÀû ÀÌÁ¡Àº º¸´Ù ±¤¹üÀ§ÇÑ ¿¡³ÊÁö ½Ã½ºÅÛ¿¡µµ Àû¿ëµÇ¸ç, FCVÀÇ ¿¬·áÀÎ ¼ö¼Ò´Â Àü±âºÐÇØ¿Í °°Àº °øÁ¤À» ÅëÇØ dz·Â, ž籤, ¹ÙÀÌ¿À¸Å½º µî ´Ù¾çÇÑ Àç»ý °¡´É ÀÚ¿ø¿¡¼ »ý»êÇÒ ¼ö ÀÖ½À´Ï´Ù. µû¶ó¼ ¼ö¼Ò´Â Àç»ý ¿¡³ÊÁö¸¦ ¿î¼Û ºÎ¹®¿¡ ÅëÇÕÇÏ´Â µ¥ µµ¿òÀÌ µÇ´Â À¯¿¬ÇÑ ¿¡³ÊÁö ij¸®¾î°¡ µÉ ¼ö ÀÖ½À´Ï´Ù. ¼ö¼Ò °æÁ¦°¡ ¼ºÀåÇÔ¿¡ µû¶ó ¿¬·áÀüÁö ÀÚµ¿Â÷´Â ȼ®¿¬·á¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³·Ãß°í º¸´Ù Áö¼Ó °¡´ÉÇÏ°í °·ÂÇÑ ¿¡³ÊÁö ½Ã½ºÅÛÀ» ±¸ÇöÇÏ´Â µ¥ ÀÖ¾î Á¡Á¡ ´õ Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. FCV´Â ¹«°øÇØ ¿î¼ÛÀ» Áö¿øÇÔÀ¸·Î½á º¸´Ù ±ú²ýÇϰí Áö¼Ó °¡´ÉÇÑ ¹Ì·¡¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.
¿¬·áÀüÁö ÀÚµ¿Â÷ ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ¿äÀÎÀº ¹«¾ùÀϱî?
¿¬·áÀüÁö ÀÚµ¿Â÷ ½ÃÀåÀÇ ¼ºÀå¿¡´Â Á¤ºÎÀÇ Áö¿ø, ¼ö¼Ò »ý»êÀÇ ¹ßÀü, ¼ö¼Ò ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡ µî ¿©·¯ °¡Áö ¿äÀÎÀÌ ÀÖ½À´Ï´Ù. ÁÖ¿ä ÃËÁø¿äÀÎ Áß Çϳª´Â ź¼Ò ¹èÃâ·®À» ÁÙÀ̰í ûÁ¤ ¿¡³ÊÁö ±â¼úÀ» ÃËÁøÇϱâ À§ÇÑ Á¤ºÎ Á¤Ã¥°ú Àμ¾Æ¼ºêÀÔ´Ï´Ù. ¸¹Àº ±¹°¡¿¡¼ ¼¼Á¦ ÇýÅÃ, º¸Á¶±Ý, ¿¬·áÀüÁö ÀÚµ¿Â÷ ±¸¸Å º¸Á¶±Ý µî ¹«°øÇØ ÀÚµ¿Â÷ÀÇ µµÀÔÀ» Àå·ÁÇÏ´Â ±ÔÁ¤À» µµÀÔÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, °¢±¹ Á¤ºÎ´Â ¼ÒºñÀÚ¿Í »ç¾÷ÀÚ°¡ ¼ö¼ÒÀü±âÂ÷¸¦ º¸´Ù ½±°Ô ÀÌ¿ëÇÒ ¼ö ÀÖµµ·Ï ¼ö¼Ò ÃæÀü ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÁøÇàÇϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ÀϺ», Çѱ¹, ÀϺΠÀ¯·´ ±¹°¡µéÀº ¼ö¼ÒÃæÀü¼Ò °Ç¼³¿¡ ¸·´ëÇÑ ÀÚ¿øÀ» ÅõÀÔÇÏ¿© ¼ö¼ÒÀü±âÂ÷ º¸±ÞÀ» À§ÇÑ ±â¹ÝÀ» ±¸ÃàÇϰí ÀÖ½À´Ï´Ù.
½ÃÀåÀ» À̲ô´Â ¶Ç ´Ù¸¥ Áß¿äÇÑ ¿ä¼Ò´Â ¼ö¼Ò Á¦Á¶ ±â¼úÀÇ ¹ßÀüÀÔ´Ï´Ù. ¼ö¼Ò´Â ¿©·¯ °¡Áö ¹æ¹ýÀ¸·Î »ý»êÇÒ ¼ö ÀÖÁö¸¸, Àç»ý¿¡³ÊÁö¸¦ ÀÌ¿ëÇØ ¼ö¼Ò¸¦ »ý»êÇÏ´Â ±×¸°¼ö¼ÒÀÇ °³¹ßÀº ¿¬·áÀüÁö ÀÚµ¿Â÷ »ê¾÷¿¡ ƯÈ÷ °í¹«ÀûÀÔ´Ï´Ù. dz·ÂÀ̳ª ž翡³ÊÁö·Î ±¸µ¿µÇ´Â Àü±âºÐÇØ¸¦ ÅëÇÑ ±×¸°¼ö¼Ò »ý»êÀº ȼ®¿¬·á¿¡ ÀÇÁ¸ÇÏÁö ¾Ê°íµµ FCV¿¡ ¿¬·á¸¦ °ø±ÞÇÒ ¼ö ÀÖ´Â Áö¼Ó °¡´ÉÇÑ ¹æ¹ýÀ» Á¦°øÇÕ´Ï´Ù. Àç»ý °¡´É ¿¡³ÊÁöÀÇ ºñ¿ëÀÌ °è¼Ó Ç϶ôÇÔ¿¡ µû¶ó, ±×¸° ¼ö¼Ò´Â ±âÁ¸ ¿¬·á¿ÍÀÇ °æÀïÀÌ Ä¡¿ÇØÁö¸é¼ Áö¼Ó°¡´ÉÇÑ ¿î¼Û ¼Ö·ç¼ÇÀÇ ÀÏȯÀ¸·Î ¿¬·áÀüÁö ÀÚµ¿Â÷ÀÇ ¸Å·ÂÀÌ Ä¿Áö°í ÀÖ½À´Ï´Ù.
»ó¾÷ ºÐ¾ß¿¡¼ ûÁ¤ ¿î¼Û¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ¿¬·áÀüÁö ÀÚµ¿Â÷ ½ÃÀåµµ ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. ¹°·ù, ´ëÁß±³Åë, ´ëÇü Æ®·° ¿î¼Û µîÀÇ ¾÷°è´Â ȯ°æ ±ÔÁ¦°¡ °ÈµÇ°í ¼ÒºñÀÚµéÀÌ º¸´Ù Áö¼Ó °¡´ÉÇÑ ¹æ¹ýÀ» Ãß±¸ÇÔ¿¡ µû¶ó µðÁ© ¿£Áø Â÷·®À» ´ëüÇÒ ¼ö ÀÖ´Â ´ë¾ÈÀ» ã°í ÀÖÀ¸¸ç, FCV´Â ÁÖÇà°Å¸®°¡ ±æ°í ¿¬·á º¸±ÞÀÌ ºü¸£¸ç ¹è±â°¡½º°¡ ÀüÇô ¹èÃâµÇÁö ¾Ê±â ¶§¹®¿¡ ¿¬·áÀüÁö Â÷·®ÀÌ ½Ç¿ëÀûÀÎ ´ë¾ÈÀÌ µÇ°í ÀÖÀ¸¸ç, ÀÌ»êÈź¼Ò ¹èÃâ·®°ú ¿î¿µºñ¿ëÀ» Àý°¨ÇϰíÀÚ ÇÏ´Â Â÷·® »ç¾÷Àڵ鿡°Ô ½Ç¿ëÀûÀÎ ´ë¾ÈÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÁÖ¿ä ÀÚµ¿Â÷ ȸ»ç¿Í ¼ö¼Ò ¿¬·á °ø±Þ¾÷üµéÀº ÆÄÆ®³Ê½ÊÀ» ¸Î°í ¿¬·áÀüÁö ±â¼ú¿¡ ¸¹Àº ÅõÀÚ¸¦ ÇÔÀ¸·Î½á ÀÌ·¯ÇÑ ¼ö¿ä¿¡ ´ëÀÀÇϰí ÀÖÀ¸¸ç, ÀÌ´Â ½ÃÀå ¼ºÀåÀ» ´õ¿í °¡¼ÓȽÃ۰í ÀÖ½À´Ï´Ù. ÀÎÇÁ¶ó¿Í ±â¼úÀÌ ¹ßÀüÇÔ¿¡ µû¶ó ¿¬·áÀüÁö ÀÚµ¿Â÷´Â Àü ¼¼°èÀûÀ¸·Î ûÁ¤ ±³Åë¼ö´ÜÀ¸·ÎÀÇ Àüȯ¿¡ ÀÖ¾î Á¡Á¡ ´õ Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¿¬·áÀüÁö ÀÚµ¿Â÷ÀÇ ¹ßÀüÀ» Á¿ìÇÒ ÇâÈÄ µ¿ÇâÀº?
¼ö¼Ò ÀÎÇÁ¶óÀÇ ¹ßÀü, ģȯ°æ ¼ö¼Ò »ý»êÀÇ ºÎ»ó, ´ëÇü Â÷·® ¹× »ó¾÷¿ë Â÷·®¿¡ ´ëÇÑ °ü½É Áõ°¡ µî ¸î °¡Áö »õ·Î¿î Æ®·»µå°¡ ¿¬·áÀüÁö ÀÚµ¿Â÷ÀÇ ¹Ì·¡ ¹ßÀüÀ» Çü¼ºÇϰí ÀÖ½À´Ï´Ù. °¡Àå Áß¿äÇÑ Æ®·»µå Áß Çϳª´Â FCV º¸±Þ¿¡ ÇʼöÀûÀÎ ¼ö¼Ò ÃæÀü ³×Æ®¿öÅ©ÀÇ È®ÀåÀÔ´Ï´Ù. Á¤ºÎ ¹× ¹Î°£ ±â¾÷µéÀº ƯÈ÷ À¯·´, ÀϺ», ͏®Æ÷´Ï¾Æ µî ¹«°øÇØ ±³Åë¼ö´Ü ÃßÁøÀÌ °ÇÑ Áö¿ª¿¡¼ ¼ö¼ÒÃæÀü¼Ò °Ç¼³¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. ¼ö¼ÒÃæÀü¼Ò °Ç¼³ÀÌ ÁøÇàµÇ¸é ¼ÒºñÀÚ¿Í ±â¾÷ÀÇ ¿¬·áÀüÁö ÀÚµ¿Â÷ µµÀÔÀÌ ¿ëÀÌÇØÁ® ¿¬·áÀüÁö ÀÚµ¿Â÷ÀÇ ¼ºÀåÀ» °¡·Î¸·´Â Áß¿äÇÑ Àå¾Ö¹° Áß Çϳª°¡ ÇØ¼ÒµÉ °ÍÀÔ´Ï´Ù.
ģȯ°æ ¼ö¼Ò »ý»êÀÇ ºÎ»óµµ FCVÀÇ ¹Ì·¡¸¦ Çü¼ºÇÏ´Â Áß¿äÇÑ Æ®·»µåÀÔ´Ï´Ù. dz·Â, ž籤, ¼ö·Â µî Àç»ý¿¡³ÊÁö¸¦ ÅëÇØ »ý»êµÇ´Â ±×¸°¼ö¼Ò´Â FCV¿¡ Áö¼Ó °¡´ÉÇϰí ź¼Ò°¡ ¾ø´Â ¿¬·á ¿É¼ÇÀ» Á¦°øÇÕ´Ï´Ù. Àç»ý¿¡³ÊÁö ºñ¿ëÀÌ °è¼Ó Ç϶ôÇϰí Àü±âºÐÇØ ±â¼úÀÌ ¹ßÀüÇÔ¿¡ µû¶ó, ±×¸°¼ö¼Ò´Â ´õ¿í ³Î¸® º¸±ÞµÇ¾î ȼ®¿¬·á¿Í °¡°Ý °æÀï·ÂÀ» °®Ãâ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ Ä£È¯°æ ¼ö¼Ò·ÎÀÇ ÀüȯÀº FCVÀÇ Áö¼Ó°¡´É¼ºÀ» Çâ»ó½Ãų »Ó¸¸ ¾Æ´Ï¶ó, ¿î¼Û ºÎ¹® Àü¹Ý¿¡¼ ÁøÁ¤ÇÑ ¹«°øÇØ ¼Ö·ç¼ÇÀ¸·Î¼ÀÇ ¸Å·ÂÀ» ³ôÀÏ °ÍÀÔ´Ï´Ù.
¿¬·áÀüÁö ÀÚµ¿Â÷ÀÇ ¹Ì·¡¿¡´Â ´ëÇüÂ÷¿Í »ó¿ëÂ÷ÀÇ ¿ëµµ°¡ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. ¿¬·áÀüÁö ÀÚµ¿Â÷ °³¹ß Ãʱ⿡´Â ½Â¿ëÂ÷ À§ÁÖ·Î °³¹ßµÆÁö¸¸, Àå°Å¸® ÁÖÇà°ú ºü¸¥ ¿¬·á º¸±ÞÀÌ ÇÊ¿äÇÑ ´ëÇü Æ®·°, ¹ö½º ¹× ±âŸ »ó¾÷¿ë Â÷·®¿¡ ƯÈ÷ ÀûÇÕÇÏ´Ù´Â ÀνÄÀÌ È®»êµÇ°í ÀÖ½À´Ï´Ù. ¿©·¯ ÀÚµ¿Â÷ Á¦Á¶¾÷ü¿Í ±â¼ú ±â¾÷µéÀÌ ¿¬·áÀüÁö Æ®·°À» °³¹ßÇϰí ÀÖÀ¸¸ç, µµ¿äŸ, Çö´ë, ´ÏÄݶó µî ÁÖ¿ä ±â¾÷µéÀÌ ¼±µÎ¸¦ ´Þ¸®°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Â÷·®Àº Àü ¼¼°è ¹èÃâ·®ÀÇ ´ëºÎºÐÀ» Â÷ÁöÇϴ ȹ° ¹× ¹°·ù »ê¾÷ÀÇ Å»Åº¼ÒÈÀÇ ¿¼è°¡ µÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¶ÇÇÑ, ¿¬·áÀüÁö ±â¼úÀº Ç×°ø, ÇØ¿î, öµµ ¿î¼Û µî ´Ù¸¥ ºÐ¾ß¿¡µµ Àû¿ëµÇ°í ÀÖ½À´Ï´Ù. Àü ¼¼°è »ê¾÷°è°¡ ÀÌ»êÈź¼Ò ¹èÃâ·®À» ÁÙ¿©¾ß ÇÏ´Â »óȲ¿¡¼ ¿¬·áÀüÁö´Â ¹èÅ͸®¸¸À¸·Î´Â ÃæºÐÇÏÁö ¾ÊÀº ¿ëµµ¸¦ À§ÇÑ Ã»Á¤ ¿¡³ÊÁö ¼Ö·ç¼ÇÀ¸·Î °ËÅäµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿¬·áÀüÁö ±â¼úÀÇ »õ·Î¿î ºÐ¾ß·ÎÀÇ È®ÀåÀº ´õ ¸¹Àº Çõ½Å°ú ÅõÀÚ¸¦ ÃËÁøÇÏ¿© FCV°¡ ¹Ì·¡ ±³Åë¼ö´Ü¿¡ ÇʼöÀûÀÎ Á¸Àç°¡ µÉ °ÍÀ¸·Î ±â´ëµË´Ï´Ù. ÀÌ·¯ÇÑ »ê¾÷°èÀÇ ¿òÁ÷ÀÓÀ¸·Î ÀÎÇØ ¿¬·áÀüÁö ÀÚµ¿Â÷´Â Àü ¼¼°è ¹«°øÇØ ¸ðºô¸®Æ¼·ÎÀÇ Àüȯ¿¡ ÀÖ¾î Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.
Global Fuel Cell Vehicle Market to Reach US$11.7 Billion by 2030
The global market for Fuel Cell Vehicle estimated at US$2.6 Billion in the year 2023, is expected to reach US$11.7 Billion by 2030, growing at a CAGR of 23.9% over the analysis period 2023-2030. Passenger Cars End-Use, one of the segments analyzed in the report, is expected to record a 24.6% CAGR and reach US$7.6 Billion by the end of the analysis period. Growth in the Commercial Vehicles End-Use segment is estimated at 26.1% CAGR over the analysis period.
The U.S. Market is Estimated at US$665.3 Million While China is Forecast to Grow at 30.1% CAGR
The Fuel Cell Vehicle market in the U.S. is estimated at US$665.3 Million in the year 2023. China, the world's second largest economy, is forecast to reach a projected market size of US$3.3 Billion by the year 2030 trailing a CAGR of 30.1% over the analysis period 2023-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 18.2% and 21.2% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 19.8% CAGR.
Global Fuel Cell Vehicle Market - Key Trends and Drivers Summarized
How Are Fuel Cell Vehicles Driving the Future of Sustainable Transportation?
Fuel cell vehicles (FCVs) are emerging as a key technology in the future of sustainable transportation, offering a clean, efficient, and zero-emission alternative to traditional internal combustion engine vehicles. FCVs use hydrogen as fuel to generate electricity through a chemical reaction in a fuel cell, producing only water vapor and heat as byproducts. This technology is gaining momentum as governments and industries worldwide focus on reducing greenhouse gas emissions and moving toward more sustainable forms of mobility. Unlike battery-electric vehicles (BEVs), which rely on rechargeable batteries, FCVs have the advantage of faster refueling times and longer driving ranges, making them particularly appealing for long-distance travel and commercial applications.
The appeal of fuel cell vehicles lies not only in their zero-emission output but also in their ability to contribute to the decarbonization of transportation sectors that are harder to electrify, such as heavy-duty trucks, buses, and maritime transport. FCVs are already being adopted by several automakers, with models like the Toyota Mirai and Hyundai Nexo leading the market. These vehicles operate silently, produce no harmful emissions, and have the potential to reshape the future of personal and commercial transportation. As hydrogen production and fueling infrastructure continue to expand, FCVs offer a promising solution to reduce reliance on fossil fuels while meeting the growing demand for cleaner, more sustainable energy sources.
What Technological Advancements Are Accelerating the Development of Fuel Cell Vehicles?
Several technological advancements are accelerating the development and adoption of fuel cell vehicles, making them more efficient, reliable, and commercially viable. One of the key innovations is the improvement in fuel cell efficiency and durability. Modern fuel cells, particularly proton exchange membrane (PEM) fuel cells, have become more efficient at converting hydrogen into electricity, allowing FCVs to achieve longer driving ranges and improved fuel economy. These advancements have been achieved through the use of new catalyst materials, such as platinum, and improvements in the membrane and electrode design, which help increase the energy density of the fuel cell while reducing its size and cost.
Another significant advancement is in hydrogen storage technology. Hydrogen is typically stored in FCVs in high-pressure tanks, but new developments in materials science are making it possible to store hydrogen more safely and efficiently. Innovations in composite materials for lightweight, high-pressure hydrogen tanks have made FCVs more practical by increasing their storage capacity without adding significant weight to the vehicle. Researchers are also exploring new hydrogen storage methods, such as solid-state hydrogen storage, which involves absorbing hydrogen into materials like metal hydrides, potentially allowing for greater fuel density and safer storage.
Fuel cell system integration is another area where significant progress is being made. Advanced powertrain designs are enabling the seamless integration of fuel cells with electric motors and batteries, improving overall vehicle performance. Hybrid systems that combine fuel cells with smaller batteries are being developed to optimize energy use, providing vehicles with the benefits of both technologies. This allows FCVs to store excess energy generated during braking or coasting in the battery, which can then be used to provide additional power during acceleration or hill climbing. Together, these advancements are making fuel cell vehicles more competitive with battery-electric vehicles and internal combustion engines, paving the way for wider adoption in the transportation sector.
How Are Fuel Cell Vehicles Supporting the Push for Zero-Emission Transport?
Fuel cell vehicles play a critical role in supporting the global push for zero-emission transport, helping to reduce air pollution and combat climate change. As countries and cities around the world set ambitious targets to reduce their carbon footprints, FCVs offer a viable solution for achieving these goals, particularly in areas where battery-electric vehicles may face limitations, such as long-distance travel and heavy-duty transportation. FCVs produce zero tailpipe emissions, with the only byproduct being water vapor, making them an environmentally friendly alternative to traditional vehicles powered by gasoline or diesel. By eliminating harmful pollutants like nitrogen oxides (NOx) and particulate matter, FCVs contribute to cleaner air and improved public health, particularly in densely populated urban areas.
Another significant advantage of fuel cell vehicles is their potential to support the decarbonization of hard-to-electrify sectors, such as heavy-duty trucking, buses, and industrial machinery. While battery-electric vehicles are well-suited for short trips and light-duty applications, FCVs offer longer ranges and faster refueling, making them ideal for long-haul transport, freight, and public transit systems. Hydrogen refueling stations can replenish a fuel cell vehicle in just a few minutes, comparable to refueling a gasoline vehicle, which gives FCVs a clear advantage over battery-electric vehicles that require longer charging times. This is especially important in sectors like logistics and freight, where downtime is costly, and vehicle utilization is high.
The environmental benefits of fuel cell vehicles also extend to the broader energy system. Hydrogen, the fuel for FCVs, can be produced from a variety of renewable sources, including wind, solar, and biomass, through processes like electrolysis. This makes hydrogen a flexible energy carrier that can help integrate renewable energy into the transportation sector. As the hydrogen economy grows, fuel cell vehicles will play an increasingly important role in reducing dependence on fossil fuels and enabling a more sustainable and resilient energy system. By supporting zero-emission transport, FCVs are contributing to a cleaner, more sustainable future.
What’s Driving the Growth of the Fuel Cell Vehicle Market?
Several factors are driving the growth of the fuel cell vehicle market, including government support, advancements in hydrogen production, and increasing investment in hydrogen infrastructure. One of the primary drivers is government policies and incentives aimed at reducing carbon emissions and promoting clean energy technologies. Many countries have introduced regulations that encourage the adoption of zero-emission vehicles, such as tax incentives, grants, and subsidies for fuel cell vehicle purchases. In addition, governments are investing in hydrogen refueling infrastructure to make FCVs more accessible to consumers and commercial operators. For example, Japan, South Korea, and parts of Europe have committed significant resources to building hydrogen refueling stations, creating the foundation for wider FCV adoption.
Another important factor driving the market is the advancement of hydrogen production technologies. Hydrogen can be produced through various methods, but the development of green hydrogen—hydrogen produced using renewable energy—is particularly exciting for the fuel cell vehicle industry. Green hydrogen production through electrolysis, powered by wind or solar energy, offers a sustainable way to fuel FCVs without relying on fossil fuels. As the cost of renewable energy continues to fall, green hydrogen is becoming more competitive with traditional fuels, increasing the appeal of fuel cell vehicles as part of a sustainable transportation solution.
The growing demand for clean transportation in the commercial sector is also boosting the fuel cell vehicle market. Industries like logistics, public transportation, and heavy-duty trucking are increasingly looking for alternatives to diesel-powered vehicles as environmental regulations tighten and consumers demand more sustainable practices. FCVs, with their long range, quick refueling, and zero emissions, are becoming a practical option for fleet operators seeking to reduce their carbon footprint and operating costs. Major automotive companies and hydrogen fuel suppliers are responding to this demand by forming partnerships and making significant investments in fuel cell technology, further accelerating the growth of the market. As infrastructure and technology improve, fuel cell vehicles are expected to play an increasingly important role in the global transition to cleaner transportation.
What Future Trends Are Shaping the Development of Fuel Cell Vehicles?
Several emerging trends are shaping the future development of fuel cell vehicles, including advancements in hydrogen infrastructure, the rise of green hydrogen production, and the growing focus on heavy-duty and commercial applications. One of the most significant trends is the expansion of hydrogen refueling networks, which is critical for the widespread adoption of FCVs. Governments and private companies are investing heavily in building hydrogen refueling stations, especially in regions like Europe, Japan, and California, where the push for zero-emission transportation is strong. As more refueling stations are built, it will become easier for consumers and businesses to adopt fuel cell vehicles, helping to overcome one of the key barriers to their growth.
The rise of green hydrogen production is another key trend shaping the future of FCVs. Green hydrogen, produced using renewable energy sources like wind, solar, and hydropower, offers a sustainable and carbon-free fuel option for FCVs. As the cost of renewable energy continues to decline and electrolysis technologies improve, green hydrogen is expected to become more widely available and cost-competitive with fossil fuels. This shift toward green hydrogen will not only make FCVs more sustainable but also enhance their appeal as a truly zero-emission solution across the transportation sector.
Heavy-duty and commercial applications are likely to play a pivotal role in the future of fuel cell vehicles. While early fuel cell vehicle development has focused on passenger cars, there is growing recognition that FCVs are particularly well-suited for heavy-duty trucks, buses, and other commercial vehicles that require long ranges and fast refueling. Several automakers and technology companies are developing fuel cell-powered trucks, with major players like Toyota, Hyundai, and Nikola leading the way. These vehicles are seen as key to decarbonizing the freight and logistics industries, which account for a significant portion of global emissions.
Additionally, fuel cell technology is being adapted for use in other sectors, such as aviation, maritime, and rail transport. As industries across the globe face increasing pressure to reduce their carbon footprints, fuel cells are being explored as a clean energy solution for applications where batteries alone may not be sufficient. This expansion of fuel cell technology into new areas is expected to drive further innovation and investment, making FCVs an even more integral part of the future of transportation. With these trends shaping the industry, fuel cell vehicles are positioned to play a critical role in the global transition to zero-emission mobility.
Select Competitors (Total 41 Featured) -