½ÃÀ庸°í¼­
»óǰÄÚµå
1788512

¼¼°èÀÇ ½ºÆ÷Ã÷ ¾Ö³Î¸®Æ½½º ½ÃÀå : Á¦°øº°, ½ºÆ÷Ã÷ À¯Çüº° ¿¹Ãø(-2030³â)

Sports Analytics Market by Offering, Sports Type (Team Sports, Individual Sports, Racing Sports, Virtual Sports ) - Global Forecast to 2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: MarketsandMarkets | ÆäÀÌÁö Á¤º¸: ¿µ¹® 370 Pages | ¹è¼Û¾È³» : Áï½Ã¹è¼Û

    
    
    




¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

¼¼°èÀÇ ½ºÆ÷Ã÷ ¾Ö³Î¸®Æ½½º ½ÃÀåÀº °­·ÂÇÏ°Ô ¼ºÀåÇϰí ÀÖÀ¸¸ç, 2025³â 22¾ï 9,000¸¸ ´Þ·¯¿¡¼­ 2030³â±îÁö 47¾ï 5,000¸¸ ´Þ·¯·Î Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ¿¹Ãø ±â°£¿¡ CAGR 15.7%ÀÇ ¼ºÀåÀÌ ¿¹»óµË´Ï´Ù.

°æÀïÀÌ ½ÉÈ­µÊ¿¡ µû¶ó ½ºÆ÷Ã÷ Á¶Á÷Àº °üÂûÇü ÄÚĪ¿¡¼­ µ¥ÀÌÅÍ Á᫐ ¼º´É ¸ðµ¨·Î ÀüȯÇϰí ÀÖ½À´Ï´Ù.

Á¶»ç ¹üÀ§
Á¶»ç ´ë»ó ¿¬µµ 2020-2030³â
±âÁØ ¿¬µµ 2024³â
¿¹Ãø ±â°£ 2025-2030³â
´ÜÀ§ 10¾ï ´Þ·¯
ºÎ¹® Á¦°ø, ¹èÆ÷ ¹æ½Ä, ½ºÆ÷Ã÷ À¯Çü, ¿ëµµ, Áö¿ª
´ë»ó Áö¿ª ºÏ¹Ì, À¯·´, ¾Æ½Ã¾ÆÅÂÆò¾ç, Áßµ¿, ¾ÆÇÁ¸®Ä«, ¶óƾ¾Æ¸Þ¸®Ä«

°í±Þ ºÐ¼® Ç÷§ÆûÀº ÀÌÁ¦ ±³À° ºÎÇÏ ÃÖÀûÈ­, ¹ÙÀÌ¿À¸ÞÄ«´Ð ¸ð´ÏÅ͸µ, Àü¼ú ¼¼·ÃÀÇ ÇÙ½ÉÀÌ µÇ¾ú½À´Ï´Ù. AI°¡ žÀçµÈ ÅøÀº ½Ç½Ã°£ »ý¸®ÇÐÀû µ¥ÀÌÅÍ¿Í °ÔÀÓ Ç÷¹ÀÌ µ¥ÀÌÅ͸¦ Á¤¹ÐÇÑ ÄÚΰú ºÎ»ó °æ°¨À» Áö¿øÇÏ´Â ½Ç¿ëÀûÀÎ Áö½ÄÀ¸·Î º¯È¯ÇÕ´Ï´Ù. ÀÏ»ó ¾÷¹«¿¡ ¾Ö³Î¸®Æ½½º¸¦ ÅëÇÕÇÔÀ¸·Î½á ÆÀÀº ÀϰüµÈ ¼º´É Çâ»óÀ» ½ÇÇöÇÏ°í ¼±¼öÀÇ ¼ºÀåÀ» °¡¼ÓÈ­ÇÏ¸ç ¾Ð·Â¿¡¼­ Á¤º¸¸¦ ±â¹ÝÀ¸·Î Á¶Á¤ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±¸Á¶È­µÈ ¾Ö³Î¸®Æ½½º ¿ì¼± Á¢±Ù ¹æ½ÄÀº Ŭ·´°ú ¿¬¸ÍÀÌ ÀÎÀ縦 °ü¸®Çϰí, Ãâ·ÂÀ» ±Ø´ëÈ­Çϰí, Àå±âÀûÀÎ °æÀï ¿ìÀ§¸¦ À¯ÁöÇÏ´Â ¹æ¹ýÀ» º¯È­½Ã۰í ÀÖ½À´Ï´Ù.

Sports Analytics Market-IMG1

°æ±â ½ºÆ÷Ã÷¿¡¼­ÀÇ ¿¹Ãø ºÐ¼®¿¡ ÀÇÇÑ Àü·«Àû ÀÌÀÍÀÇ °¡¼Ó

½ºÆ÷Ã÷ ¾Ö³Î¸®Æ½½º ½ÃÀå¿¡¼­´Â °á°ú ¿¹Ãø, ºÎ»ó À§Çè ¸ðµ¨¸µ ¹× ½Ç½Ã°£ ÀÇ»ç°áÁ¤ Áö¿ø¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ¿¹Ãø ºÐ¼® µµ±¸°¡ ±Þ¼ºÀåÀ» º¸À̰í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µµ±¸´Â ¸Ó½Å·¯´×À» Ȱ¿ëÇÏ¿© °ú°Å µ¥ÀÌÅÍ¿Í ¶óÀÌºê µ¥ÀÌÅ͸¦ ºÐ¼®ÇÏ¿© º¸´Ù Á¤È®ÇÑ °æ±â ¿¹Ãø, ¼±¼öÀÇ ÀÛ¾÷ ºÎÇÏ °ü¸®, Àü·«Àû °èȹÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ µµ±¸ÀÇ ±Þ¼ÓÇÑ º¸±ÞÀº ƯÈ÷ ½ºÆ÷Ã÷ º£ÆÃ, ÆÇŸÁö ¸®±×, °æÀï ¿ìÀ§¸¦ Ãß±¸ÇÏ´Â ¿¤¸®Æ® ÆÀ ȯ°æ¿¡¼­ µÎµå·¯Áý´Ï´Ù. AI ±â´ÉÀÌ È®ÀåµÇ°í µ¥ÀÌÅÍ Ç°ÁúÀÌ Çâ»óµÊ¿¡ µû¶ó ¿¹Ãø ºÐ¼®Àº ÇÁ·Î ½ºÆ÷Ã÷ ¹× »ó¾÷ ½ºÆ÷Ã÷ ¿¡ÄڽýºÅÛ¿¡¼­ ¼º´É ÃÖÀûÈ­¿Í ¼öÀÍ Ã¢ÃâÀÇ ÇüŸ¦ °è¼Ó º¯È­½Ã۰í ÀÖ½À´Ï´Ù.

½Ç½Ã°£ °ÔÀÓ ÀÎÅÚ¸®Àü½º¸¦ ÅëÇÑ Àü¼úÀû Á¤È®¼º°ú Àη °³¹ß ±Ø´ëÈ­

½ºÆ÷Ã÷ ÆÀ°ú Ŭ·´Àº ¼º´É ÃÖÀûÈ­, ºÎ»ó ¿¹¹æ, Àü¼úÀû ÀÇ»ç°áÁ¤¿¡ ´ëÇÑ ÀϰüµÈ ÅõÀÚ·Î ½ºÆ÷Ã÷ ºÐ¼® ½ÃÀå¿¡¼­ °¡Àå Å« ÃÖÁ¾ »ç¿ëÀÚ ºÎ¹®ÀÌ µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ Á¶Á÷Àº ¾Ö³Î¸®Æ½½º¸¦ Ȱ¿ëÇÏ¿© ½Ç½Ã°£ ¼±¼ö ÃßÀû, »ýü Á¤º¸ ºÐ¼® ¹× Àü·« ¸ðµ¨¸µÀ» ÅëÇØ °æÀï ¿ìÀ§¸¦ È®º¸Çϰí ÀÖ½À´Ï´Ù. ÇÁ·Î ¸®±×¿¡¼­ ³ôÀº ä¿ë·ü, ´ëÇÐ ¼öÁØ¿¡¼­ÀÇ °ü½É Áõ°¡, AI µµ±¸ ÅëÇÕ Áõ°¡´Â ½ÃÀå Á¡À¯À²À» ´õ¿í °­È­Çϰí ÀÖ½À´Ï´Ù. µ¥ÀÌÅÍ ÀÎÇÁ¶ó°¡ È®´ëµÇ°í ¼º°ú ±â¹ÝÀÇ ¼º´É Çâ»ó¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ÆÀ°ú Ŭ·´Àº ¼¼°è ½ºÆ÷Ã÷ »ýŰèÀÇ ¾Ö³Î¸®Æ½½º Çõ½Å°ú µµÀÔÀÇ ÁÖ¿ä ÃßÁø ¿äÀÎÀÌ µÇ°í ÀÖ½À´Ï´Ù.

ºÏ¹Ì´Â ¿¤¸®Æ® ÆÛÆ÷¸Õ½º ½Ã½ºÅÛÀÇ ±Ô¸ð¸¦ È®´ëÇÏ°í ¾Æ½Ã¾ÆÅÂÆò¾çÀº ¾Ö³Î¸®Æ½½º Áß½ÉÀÇ ½ºÆ÷Ã÷ Çõ½ÅÀ» ÃËÁø

ºÏ¹Ì´Â ¼¼°è ½ºÆ÷Ã÷ ¾Ö³Î¸®Æ½½º ½ÃÀåÀ» µ¶Á¡Çϰí ÀÖÀ¸¸ç, ÀÌ´Â ¼º´É ºÐ¼® ¼ÒÇÁÆ®¿þ¾îÀÇ º¸±Þ, ¸®±× ¹× ÇÁ·£Â÷ÀÌÁî ¿î¿µ°úÀÇ ±íÀº ÅëÇÕ, ¼±¼ö ÃßÀû ¹× ºñµð¿À ¾Ö³Î¸®Æ½½º¿Í °°Àº ±â¼ú¿¡ ´ëÇÑ Á¶±â ÅõÀÚ ¶§¹®ÀÔ´Ï´Ù. NFL, NBA, MLB ¿¤¸®Æ® ÆÀÀº ½Ç½Ã°£ ¼º´É ¸ðµ¨, ºÎ»ó ¿¹Ãø µµ±¸, Àü¼ú ºñµð¿À ºê·¹ÀÌÅ©´Ù¿î Ç÷§ÆûÀ» ¹èÆ÷ÇÏ¿© ¼±¼öÀÇ Ãâ·Â°ú °ÔÀÓ Àü·«À» ÃÖÀûÈ­ÇÕ´Ï´Ù. Àü¹® °ø±Þ¾÷üÀÇ Á¸Àç, ¼º¼÷ÇÑ µ¥ÀÌÅÍ ÀÎÇÁ¶ó, °ß°íÇÑ ½ºÆ÷Ã÷ Å×Å© ¿¡ÄڽýºÅÛÀÌ Àü¹®°¡¿Í ´ëÇÐ ¸ðµÎ¿¡¼­ Áö¼ÓÀûÀÎ Çõ½ÅÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

ÇÑÆí ¾Æ½Ã¾ÆÅÂÆò¾çÀº ±¹³» ½ºÆ÷Ã÷ÀÇ µðÁöÅÐÈ­ ÁøÇà, ÇÁ·Î¸®±× ÅõÀÚ Áõ°¡, Á¤ºÎ°¡ Áö¿øÇÏ´Â ½ºÆ÷Ã÷ °úÇÐ ±¸»ó¿¡ ÈûÀÔ¾î °¡Àå ºü¸£°Ô ¼ºÀåÇϰí ÀÖ´Â Áö¿ªÀÔ´Ï´Ù. Àεµ, ÀϺ», È£ÁÖ µî ½ÃÀå¿¡¼­´Â Æ®·¹ÀÌ´× ºÎÇÏ °ü¸®, ¿¹ÃøÀû »óÇØ ¿¹¹æ, »ó´ë ºÐ¼®¿¡ ´ëÇÑ AI ¼Ö·ç¼ÇÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù. ÀÌ Áö¿ª¿¡¼­´Â ½ºÆ÷Ã÷ ¹× û¼Ò³â ½ºÆ÷Ã÷ ÇÁ·Î±×·¥ÀÌ ±Þ¼ºÀåÇϰí ÀÖÀ¸¸ç ÆÒ Âü¿© ºÐ¼® ¹× ½ºÄ«¿ìÆÃ µµ±¸ÀÇ Ã¤Åõµ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. µ¥ÀÌÅÍ ±¸µ¿ Àü·«ÀÌ °æÀï ¼º°øÀÇ Áß½ÉÀÌ µÊ¿¡ µû¶ó ¾Æ½Ã¾ÆÅÂÆò¾çÀº »õ·Î¿î ¼ö¿ä¿¡¼­ Çõ½Å Á᫐ ¼ö¿ä·Î ÀüȯÇϰí ÀÖÀ¸¸ç, ½ºÆ÷Ã÷ ¾Ö³Î¸®Æ½½º È®´ëÀÇ Áß¿äÇÑ ±â¹ÝÀ¸·Î ÀÚ¸®Àâ°í ÀÖ½À´Ï´Ù.

ÀÌ º¸°í¼­´Â ¼¼°èÀÇ ½ºÆ÷Ã÷ ¾Ö³Î¸®Æ½½º ½ÃÀå¿¡ ´ëÇÑ Á¶»ç ºÐ¼®À» ÅëÇØ ÁÖ¿ä ÃËÁø¿äÀΰú ¾ïÁ¦¿äÀÎ, °æÀï ±¸µµ, ¹Ì·¡ µ¿Çâ µîÀÇ Á¤º¸¸¦ Á¦°øÇÕ´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­·Ð

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå Áß¿äÇÑ Áö°ß

  • ½ºÆ÷Ã÷ ¾Ö³Î¸®Æ½½º ½ÃÀåÀÇ ±â¾÷¿¡°Ô ¸Å·ÂÀûÀÎ ±âȸ
  • ½ºÆ÷Ã÷ ¾Ö³Î¸®Æ½½º ½ÃÀå : »óÀ§ 3 ¼Ö·ç¼Ç
  • ºÏ¹ÌÀÇ ½ºÆ÷Ã÷ ¾Ö³Î¸®Æ½½º ½ÃÀå : Àü°³ ¹æ½Äº°, ¼Ö·ç¼Çº°
  • ½ºÆ÷Ã÷ ¾Ö³Î¸®Æ½½º ½ÃÀå : Áö¿ªº°

Á¦5Àå ½ÃÀå °³¿ä¿Í »ê¾÷ µ¿Çâ

  • ¼Ò°³
  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
    • ¾ïÁ¦¿äÀÎ
    • ±âȸ
    • °úÁ¦
  • ½ºÆ÷Ã÷ ¾Ö³Î¸®Æ½½º ½ÃÀåÀÇ ÁøÈ­
  • °ø±Þ¸Á ºÐ¼®
  • »ýÅÂ°è ºÐ¼®
    • ½ÇÀû ºÐ¼® ¼ÒÇÁÆ®¿þ¾î
    • µ¿¿µ»ó ¾Ö³Î¸®Æ½½º Ç÷§Æû
    • ¿¹Ãø ºÐ¼® µµ±¸
    • ±âŸ ¼Ö·ç¼Ç
  • ÅõÀÚ ¹× ÀÚ±ÝÁ¶´Þ ½Ã³ª¸®¿À
  • »ç·Ê ¿¬±¸ ºÐ¼®
    • »ç·Ê ¿¬±¸ 1 : IBM°ú ESPNÀÌ È®Àå °¡´ÉÇÑ AI ÁÖµµÀÇ ÀÇ»ç °áÁ¤ Áö¿øÀ¸·Î FANTASY FOOTBALL üÇèÀ» º¯È­
    • »ç·Ê ¿¬±¸ 2: ORLANDO MAGIC°ú SAS INSTITUTE°¡ ¾Ö³Î¸®Æ½½º¸¦ Ȱ¿ëÇÏ¿© ¼öÀÍ °úÁ¦¸¦ ±Øº¹
    • »ç·Ê ¿¬±¸ 3: BOSTON CELTICS¿Í MISSION CLOUD°¡ Ŭ¶ó¿ìµå¸¦ ÅëÇØ µ¥ÀÌÅÍ ºÐ¼®À» °¡¼ÓÈ­ÇÏ¿© °æ¿µ È¿À²¼ºÀ» Çâ»ó
  • ±â¼ú ºÐ¼®
    • ÁÖ¿ä ±â¼ú
    • º¸¿Ï ±â¼ú
    • ÀÎÁ¢ ±â¼ú
  • ±ÔÁ¦ »óȲ
    • ±ÔÁ¦±â°ü, Á¤ºÎ±â°ü, ±âŸ Á¶Á÷
    • ÁÖ¿ä ±ÔÁ¦
  • ƯÇ㠺м®
    • Á¶»ç ¹æ¹ý
    • ƯÇãÃâ¿ø°Ç¼ö : ¼­·ùÁ¾º°(2016-2025³â)
    • Çõ½Å°ú ƯÇãÃâ¿ø
  • °¡°Ý ¼³Á¤ ºÐ¼®
    • Æò±Õ ÆÇ¸Å °¡°Ý : ÁÖ¿ä ±â¾÷º°(2025³â)
    • Æò±Õ ÆÇ¸Å °¡°Ý : ½ºÆ÷Ã÷ À¯Çüº°(2025³â)
  • ÁÖ¿ä ÄÁÆÛ·±½º ¹× À̺¥Æ®(2025-2026³â)
  • Porter's Five Forces ºÐ¼®
  • ÁÖ¿ä ÀÌÇØ°ü°èÀÚ¿Í ±¸¸Å ±âÁØ
  • °í°´»ç¾÷¿¡ ¿µÇâÀ» ÁÖ´Â µ¿Çâ/È¥¶õ
  • Áö¿ª ½ºÆ÷Ã÷ º£ÆÃ°ú ¿Â¶óÀÎ ÆÇŸÁö ¼öÀÍ µ¿Çâ(2025-2026³â)
  • ¹Ì·¡ Àü¸Á°ú »õ·Î¿î ÀÌ¿ë »ç·Ê
    • Â÷¼¼´ë ÆÒ ÀΰÔÀÌÁö¸ÕÆ® ¸ðµ¨
    • °³º°È­µÈ ¼±¼öÀÇ °Ç°­°ú ¿µ¾ç
    • º£ÆÃ ¹× ÆÇŸÁö ½ºÆ÷Ã÷ ¾Ö³Î¸®Æ½½ºÀÇ »ó½Â
    • e½ºÆ÷Ã÷¿Í °¡»ó ¸®±×¿ÍÀÇ ÅëÇÕ
  • ½ºÆ÷Ã÷ ¾Ö³Î¸®Æ½½º¿¡ °üÇÑ ¹ÙÀ̾îÀÇ ½ÃÁ¡
    • Ŭ·´°ú Çùȸ¿¡ À־ÀÇ Áß¿äÇÑ ÀÇ»ç °áÁ¤ ±âÁØ
    • ¾Ö³Î¸®Æ½½º Ç÷§Æû ºÐ¼®À» ±¸ÃàÇÒÁö, ±¸¸ÅÇÒÁö
    • ROI¿Í ºñÁî´Ï½º ÄÉÀ̽º °í·Á »çÇ×
    • Á¶´Þ ¸ðµ¨°ú °¡°Ý ¼³Á¤ÀÇ µ¿Çâ

Á¦6Àå ½ºÆ÷Ã÷ ¾Ö³Î¸®Æ½½º ½ÃÀå : Á¦°øº°

  • ¼Ò°³
  • ¼Ö·ç¼Ç
  • ¼­ºñ½º

Á¦7Àå ½ºÆ÷Ã÷ ¾Ö³Î¸®Æ½½º ½ÃÀå : Àü°³ ¹æ½Äº°

  • ¼Ò°³
  • Ŭ¶ó¿ìµå
  • On-Premise
  • ÇÏÀ̺긮µå

Á¦8Àå ½ºÆ÷Ã÷ ¾Ö³Î¸®Æ½½º ½ÃÀå : ½ºÆ÷Ã÷ À¯Çüº°

  • ¼Ò°³
  • ÆÀ ½ºÆ÷Ã÷
  • °³ÀÎ ½ºÆ÷Ã÷
  • ·¹ÀÌ½Ì ½ºÆ÷Ã÷
  • ¿Â¶óÀÎ ¹× °¡»ó ½ºÆ÷Ã÷
  • ½ÅÈï ½ºÆ÷Ã÷

Á¦9Àå ½ºÆ÷Ã÷ ¾Ö³Î¸®Æ½½º ½ÃÀå : ¿ëµµº°

  • ¼Ò°³
  • ¿ÂÇʵå
  • ¿ÀÇÁÇʵå

Á¦10Àå ½ºÆ÷Ã÷ ¾Ö³Î¸®Æ½½º ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

  • ¼Ò°³
  • ½ºÆ÷Ã÷ ÆÀ ¹× Ŭ·´
  • ½ºÆ÷Ã÷ ¾ÆÄ«µ¥¹Ì ¹× Äø®Áö
  • ½ºÆ÷Ã÷ ¸®±× ¹× Åë°ý ´Üü
  • ¹æ¼Û±¹ ¹× ¹Ìµð¾î Ç÷¹À̾î
  • ½ºÆù¼­½Ê ¸¶ÄÉÆÃ ¿¡ÀÌÀü½Ã
  • ½ºÆ÷Ã÷ ¿ëǰ Á¦Á¶¾÷ü
  • ½ºÆ÷Ã÷ º£ÆÃ ±â¾÷
  • ±âŸ ÃÖÁ¾ »ç¿ëÀÚ

Á¦11Àå ½ºÆ÷Ã÷ ¾Ö³Î¸®Æ½½º ½ÃÀå : Áö¿ªº°

  • ¼Ò°³
  • ºÏ¹Ì
    • ºÏ¹ÌÀÇ ½ºÆ÷Ã÷ ¾Ö³Î¸®Æ½½º ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • ºÏ¹ÌÀÇ °Å½Ã°æÁ¦ Àü¸Á
    • ¹Ì±¹
    • ij³ª´Ù
  • À¯·´
    • À¯·´ÀÇ ½ºÆ÷Ã÷ ¾Ö³Î¸®Æ½½º ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • À¯·´ÀÇ °Å½Ã °æÁ¦ Àü¸Á
    • ¿µ±¹
    • µ¶ÀÏ
    • ÇÁ¶û½º
    • ÀÌÅ»¸®¾Æ
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ½ºÆ÷Ã÷ ¾Ö³Î¸®Æ½½º ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ °Å½Ã °æÁ¦ Àü¸Á
    • Áß±¹
    • ÀϺ»
    • Àεµ
    • Çѱ¹
    • È£ÁÖ ¹× ´ºÁú·£µå
    • ½Ì°¡Æ÷¸£
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ½ºÆ÷Ã÷ ¾Ö³Î¸®Æ½½º ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ °Å½Ã °æÁ¦ Àü¸Á
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • ³²¾ÆÇÁ¸®Ä«
    • īŸ¸£
    • Æ¢¸£Å°¿¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
  • ¶óƾ¾Æ¸Þ¸®Ä«
    • ¶óƾ¾Æ¸Þ¸®Ä«ÀÇ ½ºÆ÷Ã÷ ¾Ö³Î¸®Æ½½º ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • ¶óƾ¾Æ¸Þ¸®Ä«ÀÇ °Å½Ã °æÁ¦ Àü¸Á
    • ºê¶óÁú
    • ¸ß½ÃÄÚ
    • ¾Æ¸£ÇîÆ¼³ª
    • ±âŸ ¶óƾ¾Æ¸Þ¸®Ä«

Á¦12Àå °æÀï ±¸µµ

  • °³¿ä
  • ÁÖ¿ä Âü°¡ ±â¾÷ÀÇ Àü·«/°­Á¡(2021-2025³â)
  • ¼öÀÍ ºÐ¼®(2020-2024³â)
  • ½ÃÀå Á¡À¯À² ºÐ¼®(2024³â)
  • Á¦Ç° ºñ±³
    • Á¦Ç° ºñ±³ ºÐ¼® : ÆÀ ½ºÆ÷Ã÷º°
    • Á¦Ç° ºñ±³ ºÐ¼® : °³ÀÎ ½ºÆ÷Ã÷º°
    • Á¦Ç° ºñ±³ ºÐ¼® : ¿Â¶óÀÎ ¹× °¡»ó ½ºÆ÷Ã÷º°
  • ±â¾÷ Æò°¡ ¹× À繫 ÁöÇ¥
  • ±â¾÷ Æò°¡ ¸ÅÆ®¸¯½º : ÁÖ¿ä ±â¾÷(2024³â)
  • ±â¾÷ÀÇ Æò°¡ ¸ÅÆ®¸¯½º : ½ºÅ¸Æ®¾÷/Áß¼Ò±â¾÷(2024³â)
  • °æÀï ½Ã³ª¸®¿À

Á¦13Àå ±â¾÷ ÇÁ·ÎÆÄÀÏ

  • ¼Ò°³
  • ÁÖ¿ä ±â¾÷
    • IBM
    • SAP
    • SAS INSTITUTE
    • HCLTECH
    • ZEBRA TECHNOLOGIES
    • GLOBALSTEP
    • STATS PERFORM
    • SPORTRADAR
    • HUDL
    • EXL
    • CHYRON
    • CATAPULT
  • ±âŸ ±â¾÷
    • MOTEC(BOSCH)
    • SPORTS ANALYTICS WORLD
    • VEKTA
    • BODYPRO(HEALTHCENTRAL NETWORK)
    • ZONE14
    • SPORTLOGIQ
    • UPLIFT LABS
    • KITMAN LABS
    • ORRECO
    • TRUMEDIA NETWORKS
    • VEO TECHNOLOGIES
    • SPORTANALYTICS
    • SPORTAI
    • RACE TECHNOLOGY
    • PANDASCORE

Á¦14Àå ÀÎÁ¢ ½ÃÀå°ú °ü·Ã ½ÃÀå

  • ¼Ò°³
  • ½ºÆ÷Ã÷¿ë AI ½ÃÀå - ¼¼°è ¿¹Ãø(-2030³â)
    • ½ÃÀåÀÇ Á¤ÀÇ
    • ½ÃÀå °³¿ä
  • ¹Ìµð¾î¿ë AI ½ÃÀå - ¼¼°è ¿¹Ãø(-2030³â)
    • ½ÃÀåÀÇ Á¤ÀÇ
    • ½ÃÀå °³¿ä

Á¦15Àå ºÎ·Ï

JHS 25.08.20

The sports analytics market is experiencing strong growth, projected to rise from USD 2.29 billion in 2025 to USD 4.75 billion by 2030, at a CAGR of 15.7% during the forecast period. As competitive demands intensify, sports organizations are shifting from observational coaching to data-driven performance models.

Scope of the Report
Years Considered for the Study2020-2030
Base Year2024
Forecast Period2025-2030
Units ConsideredUSD Billion
SegmentsOffering, Deployment Mode, Sports Type, Application, and Region
Regions coveredNorth America, Europe, Asia Pacific, Middle East & Africa, and Latin America

Advanced analytics platforms are now central to optimizing training loads, monitoring biomechanics, and refining tactics. AI-powered tools convert real-time physiological and gameplay data into actionable insights that support precision coaching and injury mitigation. By embedding analytics into day-to-day operations, teams unlock consistent performance gains, accelerate player development, and make informed adjustments under pressure. This structured, analytics-first approach is transforming how clubs and federations manage talent, maximize output, and sustain long-term competitive advantages.

Sports Analytics Market - IMG1

"Accelerating Strategic Gains with Predictive Analytics in Competitive Sports"

Predictive analytics tools are experiencing the fastest growth in the sports analytics market, driven by increasing demand for outcome forecasting, injury risk modeling, and real-time decision support. These tools leverage machine learning to analyze historical and live data, enabling more accurate game predictions, player workload management, and strategic planning. Their rapid adoption is especially evident in sports betting, fantasy leagues, and elite team environments seeking competitive advantages. As AI capabilities expand and data quality improves, predictive analytics continue to reshape performance optimization and revenue generation across both professional and commercial sports ecosystems.

"Maximizing Tactical Precision and Talent Development Through Real-time Game Intelligence"

Sports teams and clubs represent the largest end-user segment in the sports analytics market due to their consistent investment in performance optimization, injury prevention, and tactical decision-making. These organizations utilize analytics to gain competitive advantages through real-time player tracking, biometric analysis, and strategy modeling. High adoption across professional leagues, growing interest at the collegiate level, and increasing integration of AI tools further strengthen their market share. With expanding data infrastructure and rising demand for outcome-based performance improvements, teams and clubs continue to be the primary drivers of analytics innovation and implementation in global sports ecosystems.

"North America scales elite performance systems while Asia Pacific fuels analytics-led sports innovation."

North America dominates the global sports analytics market, led by widespread use of performance analysis software, deep integration with league and franchise operations, and early investment in technologies like player tracking and video analytics. Elite teams across the NFL, NBA, and MLB deploy real-time performance models, injury forecasting tools, and tactical video breakdown platforms to optimize athlete output and game strategy. The presence of specialized vendors, mature data infrastructure, and a robust sports-tech ecosystem fosters continuous innovation across both professional and collegiate levels.

In contrast, Asia Pacific is the fastest-growing region, propelled by increased digitization of domestic sports, rising investments in professional leagues, and government-backed sports science initiatives. Markets like India, Japan, and Australia are scaling AI-powered solutions for training load management, predictive injury prevention, and opponent analysis. The region's rapid growth in esports and youth sports programs is also accelerating the adoption of fan engagement analytics and scouting tools. As data-driven strategies become central to competitive success, Asia Pacific is transitioning from emerging to innovation-driven demand, establishing itself as a vital hub for sports analytics expansion.

Breakdown of Primaries

In-depth interviews were conducted with Chief Executive Officers (CEOs), innovation and technology directors, system integrators, and executives from various key organizations operating in the sports analytics market.

  • By Company: Tier I - 25%, Tier II - 45%, and Tier III - 30%
  • By Designation: C-Level Executives - 35%, D-Level Executives - 40%, and Others - 25%
  • By Region: North America - 45%, Europe - 25%, Asia Pacific - 15%, Middle East & Africa - 10%, and Latin America - 5%

The report includes a study of key players offering sports analytics. The major market players include IBM (US), SAS Institute (US), SAP (Germany), HCL Technologies (India), Salesforce (US), Zebra Technologies (US), Catapult (Australia), EXL (US), Chyron (US), GlobalStep (US), Stats Perform (US), Exasol (Germany), DataArt (US), TruMedia Networks (US), Orreco (Ireland), Sportradar (Switzerland), Whoop (US), Kitman Labs (Ireland), Hudl (US), Trace (US), Kinduct Technologies (Canada), Oracle (US), Uplift Labs (US), SportLogiq (Canada), SportAnalytics (Serbia), L2P Limited (UK), Quant4Sport (UK), Veo Technologies (Denmark), Carv (UK), Real Sports AI (UK), Vekta (US), Zone14 (Austria), SportAI (US), BodyPro (US), HIT Coach (US), Pulse (Various), PunchLab (Italy), Marelli (Italy), MoTeC (Australia), Race Technologies (US), and PandaScore (France).

Research Coverage

This research report categorizes the Sports Analytics market based on offering (solution (performance analytics software, video analytics platforms, predictive analytics tools, and other solutions)) and services (professional services (training & consulting services, system integration & implementation services, support & maintenance services) and managed services, deployment mode (cloud, on-premises, and hybrid), sports type (team sports (cricket, football (soccer), American football/rugby, basketball, baseball, hockey, volleyball), individual sports individual sports (call tennis, athletics (track & field), golf, swimming, cycling, gymnastics, combat sports (boxing, mixed martial arts (MMA), wrestling, judo), other individual sports), racing sports (Formula 1, MotoGP, National Association for Stock Car Auto Racing (NASCAR), horse racing, and other racing sports), online or virtual sports (fantasy sports, online betting, daily fantasy leagues, online poker & card games and other online sports) and emerging sports (digital extreme sports, paralympic sports, and other emerging sports)), application (on field (player load & movement analysis, player tracking & movement, injury prediction & health monitoring, biomechanical & kinematic analysis, training & recovery optimization, match fitness & performance benchmarking, and other on-field applications)) and off-field (opposition scouting, in-game decision support, fan engagement & experience, sponsorship & marketing ROI, merchandise sales optimization, fan behavior tracking and other off-field applications)), end user (sports teams & clubs, sports academies & colleges, sports leagues/associations & governing bodies, broadcasters & media companies, sponsorship & marketing agencies, sports equipment manufacturers, ad sports betting companies), and region (North America, Europe, Asia Pacific, Middle East & Africa, and Latin America).

The scope of the report covers detailed information regarding drivers, restraints, challenges, and opportunities influencing the growth of the sports analytics market. A detailed analysis of the key industry players was done to provide insights into their business overview, solutions, and services; key strategies; contracts, partnerships, agreements, product & service launches, and mergers and acquisitions; and recent developments associated with the market. This report also covered the competitive analysis of upcoming startups in the market ecosystem.

Key Benefits of Buying the Report

The report will provide market leaders and new entrants with information on the closest approximations of the revenue numbers for the overall sports analytics market and its subsegments. It will help stakeholders understand the competitive landscape and gain more insights to better position their businesses and plan suitable go-to-market strategies. It will also help stakeholders understand the market's pulse and provide them with information on key market drivers, restraints, challenges, and opportunities.

The report provides insights into the following pointers:

  • Analysis of key drivers (Operationalize Advanced Analytics for Performance Enhancement, Leveraging Fan Data to Personalize and Monetize Consumer Engagement, Leverage Predictive Analytics to Drive Growth in Betting and Fantasy Sports), restraints (Persistent Data Silos Undermine Platform Level Analytics Consolidation), opportunities (Enable Scalable Performance Optimization in Sports through Modular Analytics Deployment, Advance Tactical Precision and Player Development through Specialized Esports Analytics), and challenges (Ensure Data Confidentiality and Integrity with Secure Architectures and Access Control Protocols, Rapid Software Evolution Limits Analytics Accessibility for Smaller Teams)
  • Product Development/Innovation: Detailed insights into upcoming technologies, research & development activities, and product & service launches in sports Analytics
  • Market Development: Comprehensive information about lucrative markets - analyzing the market across varied regions
  • Market Diversification: Exhaustive information about new solutions & services, untapped geographies, recent developments, and investments in the Sports Analytics market
  • Competitive Assessment: In-depth assessment of market shares, growth strategies and service offerings of leading players such as IBM (US), SAS Institute (US), SAP (Germany), HCL Technologies (India), Salesforce (US), Zebra Technologies (US), Catapult (Australia), EXL (US), Chyron (US), GlobalStep (US), Stats Perform (US), Exasol (Germany), DataArt (US), TruMedia Networks (US), Orreco (Ireland), Sportradar (Switzerland), Whoop (US), Kitman Labs (Ireland), Hudl (US), Trace (US), Kinduct Technologies (Canada), Oracle (US), Uplift Labs (US), SportLogiq (Canada), SportAnalytics (Serbia), L2P Limited (UK), Quant4Sport (UK), Veo Technologies (Denmark), Carv (UK), Real Sports AI (UK), Vekta (US), Zone14 (Austria), SportAI (US), BodyPro (US), HIT Coach (US), Pulse (Various), PunchLab (Italy), Marelli (Italy), MoTeC (Australia), Race Technologies (US), and PandaScore (France).

The report also helps stakeholders understand the pulse of the sports analytics market and provides them with information on key market drivers, restraints, challenges, and opportunities.

TABLE OF CONTENTS

1 INTRODUCTION

  • 1.1 STUDY OBJECTIVES
  • 1.2 MARKET DEFINITION
    • 1.2.1 INCLUSIONS AND EXCLUSIONS
  • 1.3 MARKET SCOPE
    • 1.3.1 MARKET SEGMENTATION
    • 1.3.2 YEARS CONSIDERED
  • 1.4 CURRENCY CONSIDERED
  • 1.5 STAKEHOLDERS

2 RESEARCH METHODOLOGY

  • 2.1 RESEARCH DATA
    • 2.1.1 SECONDARY DATA
    • 2.1.2 PRIMARY DATA
      • 2.1.2.1 Primary interviews
      • 2.1.2.2 Breakup of primary profiles
      • 2.1.2.3 Key industry insights
  • 2.2 MARKET BREAKUP AND DATA TRIANGULATION
  • 2.3 MARKET SIZE ESTIMATION
    • 2.3.1 TOP-DOWN APPROACH
    • 2.3.2 BOTTOM-UP APPROACH
  • 2.4 MARKET FORECAST
  • 2.5 RESEARCH ASSUMPTIONS
  • 2.6 RESEARCH LIMITATIONS

3 EXECUTIVE SUMMARY

4 PREMIUM INSIGHTS

  • 4.1 ATTRACTIVE OPPORTUNITIES FOR PLAYERS IN SPORTS ANALYTICS MARKET
  • 4.2 SPORTS ANALYTICS MARKET: TOP THREE SOLUTIONS
  • 4.3 NORTH AMERICA: SPORTS ANALYTICS MARKET, BY DEPLOYMENT MODE AND SOLUTION
  • 4.4 SPORTS ANALYTICS MARKET, BY REGION

5 MARKET OVERVIEW AND INDUSTRY TRENDS

  • 5.1 INTRODUCTION
  • 5.2 MARKET DYNAMICS
    • 5.2.1 DRIVERS
      • 5.2.1.1 Increasing reliance on advanced analytics to optimize player performance
      • 5.2.1.2 Rising adoption of fan data analytics for personalized engagement and revenue growth
      • 5.2.1.3 Growing use of predictive analytics in legal sports betting and fantasy sports
    • 5.2.2 RESTRAINTS
      • 5.2.2.1 Fragmented data ecosystems undermining cross-functional analytics
    • 5.2.3 OPPORTUNITIES
      • 5.2.3.1 Increasing deployment of modular analytics for performance optimization in emerging sports
      • 5.2.3.2 Rising esports sector fueling real-time analytics innovation and audience-centric expansion
    • 5.2.4 CHALLENGES
      • 5.2.4.1 Inadequate data security exposing sensitive player movement and tactical analytics
      • 5.2.4.2 Frequent software updates disrupting workflow continuity
  • 5.3 EVOLUTION OF SPORTS ANALYTICS MARKET
  • 5.4 SUPPLY CHAIN ANALYSIS
  • 5.5 ECOSYSTEM ANALYSIS
    • 5.5.1 PERFORMANCE ANALYTICS SOFTWARE
    • 5.5.2 VIDEO ANALYTICS PLATFORMS
    • 5.5.3 PREDICTIVE ANALYTICS TOOLS
    • 5.5.4 OTHER SOLUTIONS
  • 5.6 INVESTMENT AND FUNDING SCENARIO
  • 5.7 CASE STUDY ANALYSIS
    • 5.7.1 CASE STUDY 1: IBM AND ESPN TRANSFORM FANTASY FOOTBALL EXPERIENCE WITH SCALABLE, AI-DRIVEN DECISION SUPPORT
    • 5.7.2 CASE STUDY 2: ORLANDO MAGIC AND SAS INSTITUTE LEVERAGE ANALYTICS TO OVERCOME REVENUE CHALLENGES
    • 5.7.3 CASE STUDY 3: BOSTON CELTICS AND MISSION CLOUD ACCELERATE DATA ANALYTICS AND ENHANCE OPERATIONAL EFFICIENCY THROUGH CLOUD
  • 5.8 TECHNOLOGY ANALYSIS
    • 5.8.1 KEY TECHNOLOGIES
      • 5.8.1.1 Computer vision
      • 5.8.1.2 Internet of Things (IoT)
      • 5.8.1.3 Edge computing
      • 5.8.1.4 Natural language processing (NLP)
    • 5.8.2 COMPLEMENTARY TECHNOLOGIES
      • 5.8.2.1 Blockchain
      • 5.8.2.2 Cloud computing
      • 5.8.2.3 Digital twin
      • 5.8.2.4 GPS & LPS
    • 5.8.3 ADJACENT TECHNOLOGIES
      • 5.8.3.1 Augmented reality (AR) and virtual reality (VR)
      • 5.8.3.2 Geospatial analytics
      • 5.8.3.3 5G and advanced connectivity
  • 5.9 REGULATORY LANDSCAPE
    • 5.9.1 REGULATORY BODIES, GOVERNMENT AGENCIES, AND OTHER ORGANIZATIONS
    • 5.9.2 KEY REGULATIONS
      • 5.9.2.1 North America
        • 5.9.2.1.1 US
        • 5.9.2.1.2 Canada
      • 5.9.2.2 Europe
        • 5.9.2.2.1 UK
      • 5.9.2.3 Asia Pacific
        • 5.9.2.3.1 India
        • 5.9.2.3.2 China
        • 5.9.2.3.3 Japan
        • 5.9.2.3.4 South Korea
        • 5.9.2.3.5 Australia
        • 5.9.2.3.6 New Zealand
      • 5.9.2.4 Middle East & Africa
        • 5.9.2.4.1 Saudi Arabia
        • 5.9.2.4.2 UAE
        • 5.9.2.4.3 Qatar
        • 5.9.2.4.4 Turkey
        • 5.9.2.4.5 South Africa
      • 5.9.2.5 Latin America
        • 5.9.2.5.1 Brazil
  • 5.10 PATENT ANALYSIS
    • 5.10.1 METHODOLOGY
    • 5.10.2 PATENTS FILED, BY DOCUMENT TYPE, 2016-2025
    • 5.10.3 INNOVATION AND PATENT APPLICATIONS
  • 5.11 PRICING ANALYSIS
    • 5.11.1 AVERAGE SELLING PRICE OF OFFERINGS, BY KEY PLAYER, 2025
    • 5.11.2 AVERAGE SELLING PRICE, BY SPORTS TYPE, 2025
  • 5.12 KEY CONFERENCES AND EVENTS, 2025-2026
  • 5.13 PORTER'S FIVE FORCES ANALYSIS
    • 5.13.1 THREAT OF NEW ENTRANTS
    • 5.13.2 THREAT OF SUBSTITUTES
    • 5.13.3 BARGAINING POWER OF SUPPLIERS
    • 5.13.4 BARGAINING POWER OF BUYERS
    • 5.13.5 INTENSITY OF COMPETITIVE RIVALRY
  • 5.14 KEY STAKEHOLDERS AND BUYING CRITERIA
    • 5.14.1 KEY STAKEHOLDERS IN BUYING PROCESS
    • 5.14.2 BUYING CRITERIA
  • 5.15 TRENDS/DISRUPTIONS IMPACTING CUSTOMER BUSINESS
  • 5.16 REGIONAL SPORTS BETTING AND ONLINE FANTASY REVENUE TRENDS (2025-2026)
  • 5.17 FUTURE OUTLOOK AND EMERGING USE CASES
    • 5.17.1 NEXT-GEN FAN ENGAGEMENT MODELS
    • 5.17.2 PERSONALIZED ATHLETE HEALTH AND NUTRITION
    • 5.17.3 RISE OF BETTING AND FANTASY SPORTS ANALYTICS
    • 5.17.4 INTEGRATION WITH E-SPORTS AND VIRTUAL LEAGUES
  • 5.18 BUYER'S PERSPECTIVE ON SPORTS ANALYTICS
    • 5.18.1 KEY DECISION CRITERIA FOR CLUBS AND ASSOCIATIONS
    • 5.18.2 BUILD VS. BUY ANALYSIS FOR ANALYTICS PLATFORMS
    • 5.18.3 ROI AND BUSINESS CASE CONSIDERATIONS
    • 5.18.4 PROCUREMENT MODELS AND PRICING TRENDS

6 SPORTS ANALYTICS MARKET, BY OFFERING

  • 6.1 INTRODUCTION
    • 6.1.1 OFFERING: SPORTS ANALYTICS MARKET DRIVERS
  • 6.2 SOLUTIONS
    • 6.2.1 PERFORMANCE ANALYTICS SOFTWARE
      • 6.2.1.1 Enhancing player efficiency and tactical accuracy through performance insights
    • 6.2.2 VIDEO ANALYTICS PLATFORMS
      • 6.2.2.1 Driving tactical precision and visual breakdown for smarter game planning
    • 6.2.3 PREDICTIVE ANALYTICS TOOLS
      • 6.2.3.1 Optimizing strategic forecasting and outcome modeling with advanced predictive tools
    • 6.2.4 OTHER SOLUTIONS
  • 6.3 SERVICES
    • 6.3.1 PROFESSIONAL SERVICES
      • 6.3.1.1 Aligning analytics execution with strategic objectives through expert-led services
      • 6.3.1.2 Training & consulting services
      • 6.3.1.3 System integration & implementation services
      • 6.3.1.4 Support & maintenance services
    • 6.3.2 MANAGED SERVICES
      • 6.3.2.1 Ensuring seamless operations and scalable performance through managed analytics services

7 SPORTS ANALYTICS MARKET, BY DEPLOYMENT MODE

  • 7.1 INTRODUCTION
    • 7.1.1 DEPLOYMENT MODE: SPORTS ANALYTICS MARKET DRIVERS
  • 7.2 CLOUD
    • 7.2.1 ENABLING SCALABLE, REAL-TIME ANALYTICS WITH FLEXIBLE CLOUD-BASED INFRASTRUCTURE
  • 7.3 ON-PREMISES
    • 7.3.1 DELIVERING DATA CONTROL AND COMPLIANCE THROUGH ON-PREMISES DEPLOYMENT MODELS
  • 7.4 HYBRID
    • 7.4.1 BALANCING FLEXIBILITY AND CONTROL IN SPORTS ANALYTICS WITH HYBRID DEPLOYMENT

8 SPORTS ANALYTICS MARKET, BY SPORTS TYPE

  • 8.1 INTRODUCTION
    • 8.1.1 SPORTS TYPE: SPORTS ANALYTICS MARKET DRIVERS
  • 8.2 TEAM SPORTS
    • 8.2.1 ENHANCING TACTICAL COORDINATION AND SCALABLE FAN ENGAGEMENT THROUGH SPORTS INTELLIGENCE TOOLS
    • 8.2.2 CRICKET
    • 8.2.3 FOOTBALL (SOCCER)
    • 8.2.4 AMERICAN FOOTBALL
    • 8.2.5 BASKETBALL
    • 8.2.6 BASEBALL
    • 8.2.7 HOCKEY
    • 8.2.8 VOLLEYBALL
    • 8.2.9 OTHER TEAM SPORTS
  • 8.3 INDIVIDUAL SPORTS
    • 8.3.1 PERSONALIZED PERFORMANCE OPTIMIZATION DRIVING ANALYTICS ADOPTION IN INDIVIDUAL SPORTS
    • 8.3.2 TENNIS
    • 8.3.3 ATHLETICS (TRACK & FIELD)
    • 8.3.4 GOLF
    • 8.3.5 SWIMMING
    • 8.3.6 CYCLING
    • 8.3.7 GYMNASTICS
    • 8.3.8 COMBAT SPORTS
      • 8.3.8.1 Boxing
      • 8.3.8.2 Mixed martial arts (MMA)
      • 8.3.8.3 Wrestling
      • 8.3.8.4 Judo
    • 8.3.9 OTHER INDIVIDUAL SPORTS
  • 8.4 RACING SPORTS
    • 8.4.1 IMPROVING TACTICAL ACCURACY AND COMPETITIVE CONSISTENCY IN RACE ENVIRONMENTS
    • 8.4.2 FORMULA 1
    • 8.4.3 MOTOGP
    • 8.4.4 NATIONAL ASSOCIATION FOR STOCK CAR AUTO RACING (NASCAR)
    • 8.4.5 HORSE RACING
    • 8.4.6 OTHER RACING SPORTS
  • 8.5 ONLINE OR VIRTUAL SPORTS
    • 8.5.1 DRIVING ENGAGEMENT AND MONETIZATION THROUGH REAL-TIME COMPETITIVE INTELLIGENCE
    • 8.5.2 FANTASY SPORTS
    • 8.5.3 ONLINE BETTING
    • 8.5.4 DAILY FANTASY SPORTS
    • 8.5.5 ONLINE POKER & CARD GAMES
    • 8.5.6 OTHER ONLINE SPORTS
  • 8.6 EMERGING SPORTS
    • 8.6.1 BUILDING DATA-FIRST GROWTH MODELS FOR NICHE AND HYBRID SPORTS FORMATS
    • 8.6.2 DIGITAL EXTREME SPORTS
    • 8.6.3 PARALYMPIC SPORTS
    • 8.6.4 OTHER EMERGING SPORTS

9 SPORTS ANALYTICS MARKET, BY APPLICATION

  • 9.1 INTRODUCTION
    • 9.1.1 APPLICATION: SPORTS ANALYTICS MARKET DRIVERS
  • 9.2 ON-FIELD
    • 9.2.1 MAXIMIZING ON-FIELD PERFORMANCE THROUGH TACTICAL INSIGHTS AND REAL-TIME DECISION SUPPORT
    • 9.2.2 PLAYER PERFORMANCE ANALYSIS
    • 9.2.3 TACTICAL AND POSITIONAL ANALYSIS
    • 9.2.4 GAME STRATEGY OPTIMIZATION
    • 9.2.5 FATIGUE AND WORKLOAD MONITORING
    • 9.2.6 OPPONENT SCOUTING AND MATCH PREPARATION
    • 9.2.7 INJURY RISK PREDICTION
    • 9.2.8 OTHER ON-FIELD APPLICATIONS
  • 9.3 OFF-FIELD
    • 9.3.1 OPTIMIZING OFF-FIELD DECISIONS THROUGH STRATEGIC, OPERATIONAL, AND COMMERCIAL ANALYTICS
    • 9.3.2 FAN ENGAGEMENT ANALYTICS
    • 9.3.3 SPONSORSHIP VALUATION AND ROI TRACKING
    • 9.3.4 TICKETING AND ATTENDANCE FORECASTING
    • 9.3.5 SOCIAL MEDIA AND SENTIMENT ANALYSIS
    • 9.3.6 MERCHANDISE SALES OPTIMIZATION
    • 9.3.7 OTHER OFF-FIELD APPLICATIONS

10 SPORTS ANALYTICS MARKET, BY END USER

  • 10.1 INTRODUCTION
    • 10.1.1 END USER: SPORTS ANALYTICS MARKET DRIVERS
    • 10.1.2 SPORTS TEAMS & CLUBS
      • 10.1.2.1 Leveraging data to enhance competitive performance and guide tactical, physical, and talent decisions
    • 10.1.3 SPORTS ACADEMIES & COLLEGES
      • 10.1.3.1 Driving athlete development and curriculum design through integrated performance and training analytics
    • 10.1.4 SPORTS LEAGUES & GOVERNING BODIES
      • 10.1.4.1 Optimizing competition integrity and strategic growth through data-driven oversight
    • 10.1.5 BROADCASTERS & MEDIA COMPANIES
      • 10.1.5.1 Enhancing viewer experience and content strategy through real-time performance and audience analytics
    • 10.1.6 SPONSORSHIP & MARKETING AGENCIES
      • 10.1.6.1 Using fan engagement and performance data to maximize sponsorship and campaign outcomes
    • 10.1.7 SPORTS EQUIPMENT MANUFACTURERS
      • 10.1.7.1 Driving product innovation and athlete-centric solutions through data insights and performance trends
    • 10.1.8 SPORTS BETTING COMPANIES
      • 10.1.8.1 Maximizing competitive advantage through real-time data and predictive analytics in betting operations
    • 10.1.9 OTHER END USERS

11 SPORTS ANALYTICS MARKET, BY REGION

  • 11.1 INTRODUCTION
  • 11.2 NORTH AMERICA
    • 11.2.1 NORTH AMERICA: SPORTS ANALYTICS MARKET DRIVERS
    • 11.2.2 NORTH AMERICA: MACROECONOMIC OUTLOOK
    • 11.2.3 US
      • 11.2.3.1 Integrating sports analytics for performance optimization and enhanced betting insights
    • 11.2.4 CANADA
      • 11.2.4.1 Advancing sports analytics with virtual and fantasy sports
  • 11.3 EUROPE
    • 11.3.1 EUROPE: SPORTS ANALYTICS MARKET DRIVERS
    • 11.3.2 EUROPE: MACROECONOMIC OUTLOOK
    • 11.3.3 UK
      • 11.3.3.1 Empowering data-centric engagement through strategic collaborations
    • 11.3.4 GERMANY
      • 11.3.4.1 Advancing competitive edge through integrated predictive analytics
    • 11.3.5 FRANCE
      • 11.3.5.1 Transforming tactical dynamics and academy outcomes via advanced analytics
    • 11.3.6 ITALY
      • 11.3.6.1 Optimizing coaching and recruitment methodologies with data-driven intelligence
    • 11.3.7 SPAIN
      • 11.3.7.1 Elevating tactical intelligence and fan connection through data modeling
    • 11.3.8 REST OF EUROPE
  • 11.4 ASIA PACIFIC
    • 11.4.1 ASIA PACIFIC: SPORTS ANALYTICS MARKET DRIVERS
    • 11.4.2 ASIA PACIFIC: MACROECONOMIC OUTLOOK
    • 11.4.3 CHINA
      • 11.4.3.1 Leveraging analytics for optimized athlete performance and enhanced data-driven decisions
    • 11.4.4 JAPAN
      • 11.4.4.1 Olympic-focused investment and institutional partnerships accelerate analytics adoption across sports
    • 11.4.5 INDIA
      • 11.4.5.1 Real-time performance analysis accelerates team strategy and player development nationwide
    • 11.4.6 SOUTH KOREA
      • 11.4.6.1 Maximizing competitive gains through data-driven decisions in esports
    • 11.4.7 AUSTRALIA & NEW ZEALAND
      • 11.4.7.1 Integrated analytics adoption and collaboration drive sporting excellence
    • 11.4.8 SINGAPORE
      • 11.4.8.1 National data exchange enhances athlete performance and institutional planning
    • 11.4.9 REST OF ASIA PACIFIC
  • 11.5 MIDDLE EAST & AFRICA
    • 11.5.1 MIDDLE EAST & AFRICA: SPORTS ANALYTICS MARKET DRIVERS
    • 11.5.2 MIDDLE EAST & AFRICA: MACROECONOMIC OUTLOOK
    • 11.5.3 SAUDI ARABIA
      • 11.5.3.1 Vision 2030 and club-tech partnerships drive analytics-led sports innovation
    • 11.5.4 UAE
      • 11.5.4.1 Advancing talent and increasing fan engagement through targeted analytics adoption
    • 11.5.5 SOUTH AFRICA
      • 11.5.5.1 Digital integration and youth development propel sports analytics momentum
    • 11.5.6 QATAR
      • 11.5.6.1 Embedding advanced sports analytics for enhanced talent and fan experiences
    • 11.5.7 TURKEY
      • 11.5.7.1 Elevating sports growth through targeted club and federation analytics partnerships
    • 11.5.8 REST OF MIDDLE EAST & AFRICA
  • 11.6 LATIN AMERICA
    • 11.6.1 LATIN AMERICA: SPORTS ANALYTICS MARKET DRIVERS
    • 11.6.2 LATIN AMERICA: MACROECONOMIC OUTLOOK
    • 11.6.3 BRAZIL
      • 11.6.3.1 Institutional backing and club innovation accelerate data-driven athletic advancements
    • 11.6.4 MEXICO
      • 11.6.4.1 Sports analytics advances tactical precision and fan engagement in Mexican leagues
    • 11.6.5 ARGENTINA
      • 11.6.5.1 Elevating sports through tactical intelligence and federated data innovation
    • 11.6.6 REST OF LATIN AMERICA

12 COMPETITIVE LANDSCAPE

  • 12.1 OVERVIEW
  • 12.2 KEY PLAYER STRATEGIES/RIGHT TO WIN, 2021-2025
  • 12.3 REVENUE ANALYSIS, 2020-2024
  • 12.4 MARKET SHARE ANALYSIS, 2024
  • 12.5 PRODUCT COMPARISON
    • 12.5.1 PRODUCT COMPARATIVE ANALYSIS, BY TEAM SPORTS
      • 12.5.1.1 Sportscode (Hudl)
      • 12.5.1.2 Catapult Pro Video (Catapult)
      • 12.5.1.3 Kitman Labs Intelligence Platform (Kitman Labs)
      • 12.5.1.4 Veo Analytics (Veo Technologies)
      • 12.5.1.5 Sportlogiq iCE Platform (Sportlogiq)
    • 12.5.2 PRODUCT COMPARATIVE ANALYSIS, BY INDIVIDUAL SPORTS
      • 12.5.2.1 MoTeC i2 [MoTeC (Bosch Company)]
      • 12.5.2.2 Uplift Vision (Uplift Labs)
      • 12.5.2.3 Orreco Zone (Orreco)
      • 12.5.2.4 BodyPro Platform (BodyPro)
      • 12.5.2.5 Vekta Platform (Vekta)
    • 12.5.3 PRODUCT COMPARATIVE ANALYSIS, BY ONLINE OR VIRTUAL SPORTS
      • 12.5.3.1 Opta AI Studio (Stats Perform)
      • 12.5.3.2 Radar360 Analytics Platform (Sportradar)
      • 12.5.3.3 Esports Fantasy (Pandascore)
      • 12.5.3.4 SportAI Platform (SportAI)
      • 12.5.3.5 Playtest Analytics (GlobalStep)
  • 12.6 COMPANY VALUATION AND FINANCIAL METRICS
  • 12.7 COMPANY EVALUATION MATRIX: KEY PLAYERS, 2024
    • 12.7.1 STARS
    • 12.7.2 EMERGING LEADERS
    • 12.7.3 PERVASIVE PLAYERS
    • 12.7.4 PARTICIPANTS
    • 12.7.5 COMPANY FOOTPRINT: KEY PLAYERS, 2024
      • 12.7.5.1 Company footprint
      • 12.7.5.2 Regional footprint
      • 12.7.5.3 Offering footprint
      • 12.7.5.4 Sports type footprint
      • 12.7.5.5 End user footprint
  • 12.8 COMPANY EVALUATION MATRIX: STARTUPS/SMES, 2024
    • 12.8.1 PROGRESSIVE COMPANIES
    • 12.8.2 RESPONSIVE COMPANIES
    • 12.8.3 DYNAMIC COMPANIES
    • 12.8.4 STARTING BLOCKS
    • 12.8.5 COMPETITIVE BENCHMARKING: STARTUPS/SMES, 2024
      • 12.8.5.1 Detailed list of key startups/SMEs
      • 12.8.5.2 Competitive benchmarking of key startups/SMEs
  • 12.9 COMPETITIVE SCENARIO
    • 12.9.1 PRODUCT LAUNCHES AND ENHANCEMENTS
    • 12.9.2 DEALS

13 COMPANY PROFILES

  • 13.1 INTRODUCTION
  • 13.2 KEY PLAYERS
    • 13.2.1 IBM
      • 13.2.1.1 Business overview
      • 13.2.1.2 Products/Solutions/Services offered
      • 13.2.1.3 Recent developments
        • 13.2.1.3.1 Product launches and enhancements
        • 13.2.1.3.2 Deals
      • 13.2.1.4 MnM view
        • 13.2.1.4.1 Key strengths
        • 13.2.1.4.2 Strategic choices
        • 13.2.1.4.3 Weaknesses and competitive threats
    • 13.2.2 SAP
      • 13.2.2.1 Business overview
      • 13.2.2.2 Products/Solutions/Services offered
      • 13.2.2.3 Recent developments
        • 13.2.2.3.1 Product launches and enhancements
        • 13.2.2.3.2 Deals
      • 13.2.2.4 MnM view
        • 13.2.2.4.1 Key strengths
        • 13.2.2.4.2 Strategic choices
        • 13.2.2.4.3 Weaknesses and competitive threats
    • 13.2.3 SAS INSTITUTE
      • 13.2.3.1 Business overview
      • 13.2.3.2 Products/Solutions/Services offered
      • 13.2.3.3 Recent developments
        • 13.2.3.3.1 Deals
      • 13.2.3.4 MnM view
        • 13.2.3.4.1 Key strengths
        • 13.2.3.4.2 Strategic choices
        • 13.2.3.4.3 Weaknesses and competitive threats
    • 13.2.4 HCLTECH
      • 13.2.4.1 Business overview
      • 13.2.4.2 Products/Solutions/Services offered
      • 13.2.4.3 Recent developments
        • 13.2.4.3.1 Product launches and enhancements
        • 13.2.4.3.2 Deals
      • 13.2.4.4 MnM view
        • 13.2.4.4.1 Key strengths
        • 13.2.4.4.2 Strategic choices
        • 13.2.4.4.3 Weaknesses and competitive threats
    • 13.2.5 ZEBRA TECHNOLOGIES
      • 13.2.5.1 Business overview
      • 13.2.5.2 Products/Solutions/Services offered
      • 13.2.5.3 Recent developments
        • 13.2.5.3.1 Deals
      • 13.2.5.4 MnM view
        • 13.2.5.4.1 Key strengths
        • 13.2.5.4.2 Strategic choices
        • 13.2.5.4.3 Weaknesses and competitive threats
    • 13.2.6 GLOBALSTEP
      • 13.2.6.1 Business overview
      • 13.2.6.2 Products/Solutions/Services offered
      • 13.2.6.3 Recent developments
        • 13.2.6.3.1 Product launches and enhancements
        • 13.2.6.3.2 Deals
    • 13.2.7 STATS PERFORM
      • 13.2.7.1 Business overview
      • 13.2.7.2 Products/Solutions/Services offered
      • 13.2.7.3 Recent developments
        • 13.2.7.3.1 Product launches and enhancements
        • 13.2.7.3.2 Deals
    • 13.2.8 SPORTRADAR
      • 13.2.8.1 Business overview
      • 13.2.8.2 Products/Solutions/Services offered
      • 13.2.8.3 Recent developments
        • 13.2.8.3.1 Product launches and enhancements
        • 13.2.8.3.2 Deals
    • 13.2.9 HUDL
      • 13.2.9.1 Business overview
      • 13.2.9.2 Products/Solutions/Services offered
      • 13.2.9.3 Recent developments
        • 13.2.9.3.1 Product launches and enhancements
        • 13.2.9.3.2 Deals
    • 13.2.10 EXL
      • 13.2.10.1 Business overview
      • 13.2.10.2 Products/Solutions/Services offered
    • 13.2.11 CHYRON
    • 13.2.12 CATAPULT
  • 13.3 OTHER PLAYERS
    • 13.3.1 MOTEC (BOSCH)
    • 13.3.2 SPORTS ANALYTICS WORLD
    • 13.3.3 VEKTA
    • 13.3.4 BODYPRO (HEALTHCENTRAL NETWORK)
    • 13.3.5 ZONE14
    • 13.3.6 SPORTLOGIQ
    • 13.3.7 UPLIFT LABS
    • 13.3.8 KITMAN LABS
    • 13.3.9 ORRECO
    • 13.3.10 TRUMEDIA NETWORKS
    • 13.3.11 VEO TECHNOLOGIES
    • 13.3.12 SPORTANALYTICS
    • 13.3.13 SPORTAI
    • 13.3.14 RACE TECHNOLOGY
    • 13.3.15 PANDASCORE

14 ADJACENT AND RELATED MARKETS

  • 14.1 INTRODUCTION
  • 14.2 AI IN SPORTS MARKET - GLOBAL FORECAST TO 2030
    • 14.2.1 MARKET DEFINITION
    • 14.2.2 MARKET OVERVIEW
      • 14.2.2.1 AI in sports market, by offering
      • 14.2.2.2 AI in sports market, by end user
      • 14.2.2.3 AI in sports market, by region
  • 14.3 AI IN MEDIA MARKET - GLOBAL FORECAST TO 2030
    • 14.3.1 MARKET DEFINITION
    • 14.3.2 MARKET OVERVIEW
      • 14.3.2.1 AI in media market, by offering
      • 14.3.2.2 AI in media market, by application
      • 14.3.2.3 AI in media market, by end user
      • 14.3.2.4 AI in media market, by region

15 APPENDIX

  • 15.1 DISCUSSION GUIDE
  • 15.2 KNOWLEDGESTORE: MARKETSANDMARKETS' SUBSCRIPTION PORTAL
  • 15.3 CUSTOMIZATION OPTIONS
  • 15.4 RELATED REPORTS
  • 15.5 AUTHOR DETAILS
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦