시장보고서
상품코드
1441458

자동차용 AI 기반 모델 기술과 이용 동향(2023-2024년)

Automotive AI Foundation Model Technology and Application Trends Report, 2023-2024

발행일: | 리서치사: ResearchInChina | 페이지 정보: 영문 302 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    



※ 본 상품은 영문 자료로 한글과 영문 목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문 목차를 참고해주시기 바랍니다.

2023년 이후 더 많은 차량 모델이 기반 모델과 연결되기 시작했고, 자동차 기반 모델 솔루션을 출시하는 Tier 1이 증가하고 있습니다. 특히 테슬라의 FSD V12의 큰 진전과 SORA의 출시는 조종석과 지능형 운전에서 AI 기반 모델의 구현을 가속화했습니다.

엔드 투 엔드 자율주행 기반 모델 붐이 일고 있습니다.

2023년 2월, 엔드 투 엔드 자율주행 모델을 채택한 Tesla FSD v12.2.1은 직원과 테스터뿐만 아니라 미국에서도 추진되기 시작했습니다. 첫 고객 피드백에 따르면 FSD V12는 상당히 강력하여 이전에는 자율주행을 믿지 않았던 일반인들도 감히 FSD를 이용할 수 있게 되었다고 합니다. 예를 들어 Tesla FSD V12는 도로의 웅덩이를 우회할 수 있으며, Tesla 엔지니어는 "이러한 운전 접근 방식은 명시적인 코드로 구현하기 어렵지만 Tesla의 엔드 투 엔드 접근 방식으로는 거의 어려움 없이 구현할 수 있다"고 말했습니다.

자율주행을 위한 AI 기반 모델 개발은 4단계로 나눌 수 있습니다.

1.0 단계에서는 지각 수준의 기반 모델(Transformer)을 사용합니다.

2.0 단계는 모듈화이며, 기본 모델은 인식, 계획 및 제어, 의사 결정에 사용됩니다.

3.0 단계는 엔드-투-엔드 기반 모델(한쪽 '끝'은 센서의 원시 데이터, 다른 쪽 '끝'은 구동 동작을 직접 출력하는 모델)입니다.

4.0 단계는 수직적 AI에서 범용 AI(AGI의 세계 모델)로 나아가는 단계입니다.

대부분의 기업은 현재 2.0 단계에 있으며, Tesla FSD V12는 이미 3.0 단계에 있습니다. 2024년 1월 30일, Xpeng Motor는 엔드-투-엔드 모델이 다음 단계에서 자동차에 완전히 사용될 것이라고 발표했으며, NIO와 Li Auto도 2024년에 "엔드-투-엔드 기반" 자율주행 모델을 발표할 것으로 알려졌습니다. 엔드-투-엔드 기반' 자율주행 모델을 발표할 것으로 알려졌습니다.

FSD V12의 운전 판단은 AI 알고리즘에 의해 생성됩니다. 이를 위해 30만 줄 이상의 C 코드를 대체하는 방대한 비디오 데이터로 훈련된 엔드 투 엔드 신경망을 사용하며, FSD V12는 검증이 필요한 새로운 경로를 제공합니다. 실현 가능하다면 업계에 파괴적인 영향을 미칠 것으로 예상됩니다.

2월 16일, OpenAI는 텍스트에서 동영상으로 변환하는 모델 SORA를 발표하며 AI 동영상 용도의 폭넓은 채택을 알렸습니다.

SORA는 텍스트와 이미지에서 최대 60초의 동영상 생성을 지원할 뿐만 아니라, 동영상 생성, 복잡한 시나리오 및 캐릭터 생성, 물리적 세계의 시뮬레이션 능력에서 기존 기술을 크게 능가합니다.

SORA와 FSD V12는 시각을 통해 AI가 현실의 물리적 세계를 이해하고 심지어 시뮬레이션할 수 있게 해주며, Elon Mask는 FSD 12와 Sora는 시각을 통해 세계를 인식하고 이해하는 AI의 능력의 두 가지 열매일 뿐이며, FSD는 궁극적으로 운전 행동에 사용되며, Sora는 비디오 생성에 사용된다, Sora는 비디오 생성에 사용될 것으로 보고 있습니다.

SORA의 높은 인기는 FSD V12의 합리성을 더욱 증명하고 있으며, Mask는 "지난해부터 테슬라의 세대별 비디오"라고 말했습니다.

AI 기반 모델은 빠르게 진화하고 새로운 기회를 가져다 줄 것입니다.

최근 3년 동안 자율주행의 기본 모델은 여러 차례 진화했고, 주요 자동차 제조업체의 자율주행 시스템은 매년 재작성되고 있으며, 후발주자에게도 진입 기회를 제공합니다.

CVPR 2023에서 SenseTime, OpenDriveLab, Horizon Robotics가 공동으로 발표한 엔드투엔드 자율주행 알고리즘인 UniAD가 2023 Best Paper를 수상했습니다.

자동차 AI 기반 모델에 대해 조사 분석하여 알고리즘 및 기반 모델 개요, 기반 모델 활용 동향, 기업 개요 등의 정보를 제공합니다.

목차

제1장 자율주행(AD) 알고리즘의 분류와 일반적인 알고리즘 모델

  • AD시스템의 분류와 소프트웨어 2.0
  • Baidu AD 알고리즘 개발 역사
  • Tesla AD 알고리즘 개발 역사
  • 뉴럴 네트워크 모델
  • 기존 AD AI알고리즘(소규모 모델)
  • Transformer와 BEV(기반 모델)
  • 엔드 투 엔드 기반 모델의 예

제2장 AI 기반 모델과 지능형 컴퓨팅 센터의 개요

  • AI 기반 모델
  • 자동차에서 AI 기반 모델의 이용
  • 자율주행(AD)용 멀티모달 베이직 기반 모델
  • 지능형 컴퓨팅 센터

제3장 Tesla 알고리즘과 기반 모델의 분석

  • CNN와 Transformer의 알고리즘 융합
  • Transformer는 2D를 3D로 변환한다.
  • 점유 네트워크, 시맨틱 세분화, 시공간 시퀀스
  • LaneGCN, 검색 트리
  • 데이터 클로즈드 루프, 데이터 엔진

제4장 AI알고리즘과 기반 모델 프로바이더

  • Haomo.ai
  • QCraft
  • Baidu
  • Inspur
  • SenseTime
  • Huawei
  • Unisound
  • iFLYTEK
  • AISpeech
  • Megvii Technology
  • Volcengine
  • Tencent Cloud
  • 기타 기업

제5장 OEM 기반 모델

  • Xpeng Motor
  • Li Auto
  • Geely
  • BYD
  • GM
  • Changan Automobile
  • 기타 자동차 기업

제6장 자동차에서 SORA와 AI 기반 모델의 이용 동향

  • Sora 텍스트 영상 변환 기반 모델의 분석
  • Sora 기반이 되는 알고리즘 아키텍처의 설명
  • 제네레이티브 월드 모델과 지능형 차량 산업
  • 자동차에서 AI 기반 모델의 이용 동향
  • 칩용 AI 기반 모델 요건
KSA 24.04.16

Since 2023 ever more vehicle models have begun to be connected with foundation models, and an increasing number of Tier1s have launched automotive foundation model solutions. Especially Tesla's big progress of FSD V12 and the launch of SORA have accelerated implementation of AI foundation models in cockpits and intelligent driving.

End-to-End autonomous driving foundation models boom.

In February 2023, Tesla FSD v12.2.1, which adopts an end-to-end autonomous driving model, began to be pushed in the United States, not just to employees and testers. According to the feedback from the first customers, FSD V12 is quite powerful, allowing ordinary people who previously did not believe in and use autonomous driving to dare to use FSD. For example, Tesla FSD V12 can bypass puddles on roads. A Tesla engineer commented: this kind of driving approach is difficult to implement with explicit code, but Tesla's end-to-end approach makes it almost effortlessly.

The development of AI foundation models for autonomous driving can be divided into four phases.

Phase 1.0 uses a foundation model (Transformer) at the perception level.

Phase 2.0 is modularization, with foundation models used in perception, planning & control and decision.

Phase 3.0 is end-to-end foundation models (one "end" is raw data from sensors, and the other "end" directly outputs driving actions).

Phase 4.0 is about heading from vertical AI to artificial general intelligence (AGI's world model).

Most companies are now in Phase 2.0, while Tesla FSD V12 is already in Phase 3.0. Other OEMs and Tier1s have followed up with the end-to-end foundation model FSD V12. On January 30, 2024, Xpeng Motor announced that its end-to-end model will be fully available to vehicles in the next step. It is known that NIO and Li Auto will also launch "end-to-end based" autonomous driving models in 2024.

FSD V12's driving decisions are generated by an AI algorithm. It uses end-to-end neural networks trained with massive video data to replace more than 300,000 lines of C++ code. FSD V12 provides a new path that needs to be verified. If it is feasible, it will have a disruptive impact on the industry.

On February 16, OpenAI introduced text-to-video model SORA, signaling the wide adoption of AI video applications. SORA not only supports generation of up to 60-second videos from texts or images, but it well outperforms previous technologies in capabilities of video generation, complex scenario and character generation, and physical world simulation.

Through vision both SORA and FSD V12 enable AI to understand and even simulate the real physical world. Elon Mask believes that FSD 12 and Sora are just two of the fruits of AI's ability to recognize and understand the world through vision, and FSD is ultimately used for driving behaviors, and Sora is used to generate videos.

The high popularity of SORA is further evidence of the rationality of FSD V12. Musk said "Tesla generative video from last year".

AI foundation models evolve rapidly, bringing new opportunities.

In recent three years foundation models for autonomous driving have undergone several evolutions, and the autonomous driving systems of leading automakers must be rewritten almost every year, which also provides entry opportunities for late entrants.

At CVPR 2023, UniAD, an end-to-end autonomous driving algorithm jointly released by SenseTime, OpenDriveLab and Horizon Robotics, won the 2023 Best Paper.

In early 2024, Waytous' technical team and the Institute of Automation Chinese Academy of Sciences jointly proposed GenAD, the industry's first generative end-to-end autonomous driving model which combines generative AI and end-to-end autonomous driving technology. This technology is a disruption to UniAD progressive process end-to-end solution, and explores a new end-to-end autonomous driving mode. The key is to using generative AI to predict temporal evolution of the vehicle and surroundings in past scenarios.

In February 2024, Horizon Robotics and Huazhong University of Science and Technology proposed VADv2, an end-to-end driving model based on probabilistic planning. VADv2 takes multi-view image sequences as input in a streaming manner, transforms sensor data into environmental token embeddings, outputs the probabilistic distribution of action, and samples one action to control the vehicle. Using only camera sensors, VADv2 achieves state-of-the-art closed-loop performance in CARLA Town05 benchmark test, much better than all existing approaches. It runs stably in a fully end-to-end manner, even without rule-based wrapper.

On the Town05 Long benchmark, VADv2 achieved a Drive Score of 85.1, a Route Completion of 98.4, and an Infraction Score of 0.87, as shown in Tab. 1. Compared to the previous state-of-the-art method, VADv2 achieves a higher Route Completion while significantly improving Drive Score by 9.0. It is worth noting that VADv2 only utilizes cameras as perception input, while DriveMLM utilizes both cameras and LiDAR. Furthermore, compared to the previous best method which only relies on cameras, VADv2 demonstrates even greater advantages, with a remarkable increase in Drive Score of up to 16.8.

Also in February 2024, the Institute for Interdisciplinary Information Sciences at Tsinghua University and Li Auto introduced DriveVLM (its whole process shown in the figure below). A range of images are processed by a large visual language model (VLM) to perform specific chain of thought (CoT) reasoning to produce driving planning results. This large VLM includes a visual encoder and a large language model (LLM).

Due to limitations of VLMs in spatial reasoning and high computing requirements, DriveVLM team proposed DriveVLM-Dual, a hybrid system that combines advantages of DriveVLM and conventional autonomous driving pipelines. DriveVLM-Dual optionally combines DriveVLM with conventional 3D perception and planning modules, such as 3D object detector, occupancy network, and motion planner, allowing the system to achieve 3D localization and high-frequency planning. This dual-system design, similar to slow and fast thinking processes of human brain, can effectively adapt to changing complexity of driving scenarios.

AI and cloud companies attract attention as foundation models emerge.

As AI foundation models emerge, computing power, algorithm and data are indispensable. AI companies (iFLYTEK, SenseTime, Megvii, etc.) that are good at algorithms and have a large reserve of computing power, and cloud computing companies (Inspur, Volcengine, Tencent Cloud, etc.) with powerful intelligent computing centers, come under a spotlight of OEMs.

In the field of AI Foundation Model, SenseTime has deployed cockpit multimodal foundation model SenseChat-Vision, Artificial Intelligence Data Center (AIDC, with computing power of 6000P), and autonomous driving foundation model DriveMLM. In early 2024, SenseTime launched DriveMLM and achieved good results on CARLA, the most authoritative list of closed-loop test. DriveMLM is an intermediate solution between modular and end-to-end solutions and is interpretable.

For collection of autonomous driving corner cases, Volcengine and Haomo.ai work together to use foundation models to generate scenarios and improve annotation efficiency. The cloud service capabilities provided by Volcengine help Haomo.ai to improve the overall pre-annotation efficiency of DriveGPT by 10 times.

In 2023, Tencent released upgraded products and solutions in Intelligent Vehicle Cloud, Intelligent Driving Cloud Map, Intelligent Cockpit and other fields. In terms of computing power, Tencent Intelligent Vehicle Cloud enables 3.2Tbps bandwidth, 3 times higher computing performance, 10 times higher communication performance, and an over 60% increase in computing cluster GPU utilization, providing high-bandwidth, low-latency intelligent computing power support for training foundation models for intelligent driving. As for training acceleration, Tencent Intelligent Vehicle Cloud combines Angel Training Acceleration Framework, with training speed twice and reasoning speed 1.3 times faster than the industry's mainstream frameworks. Currently Bosch, NIO, NVIDIA, Mercedes-Benz, and WeRide among others are users of Tencent Intelligent Vehicle Cloud. In 2024, Tencent will further strengthen construction of AI foundation models.

Table of Contents

1 Classification of Autonomous Driving (AD) Algorithms and Common Algorithm Models

  • 1.1 AD System Classification and Software 2.0
  • 1.2 Baidu AD Algorithm Development History
    • 1.2.1 Model 1.0
    • 1.2.2 Perception 1.0
    • 1.2.3 Perception 2.0
    • 1.2.4 Perception Foundation Model
    • 1.2.5 Foundation Model Application Case
  • 1.3 Tesla AD Algorithm Development History
    • 1.3.1 Development History (1)
    • 1.3.2 Development History (2)
    • 1.3.3 Development History (3)
    • 1.3.4 Development History (4)
    • 1.3.5 Dojo Supercomputing Center
  • 1.4 Neural Network Model
    • 1.4.1 DNN
    • 1.4.2 CNN
    • 1.4.3 RNN
    • 1.4.4 Transformer and Foundation Model
    • 1.4.5 Occupancy Network
    • 1.4.6 Disadvantage of AI Foundation Model (1)
    • 1.4.7 Disadvantage of AI Foundation Model (1)
  • 1.5 Traditional AD AI Algorithms (Small Model)
  • 1.6 Transformer and BEV (Foundation Model)
    • 1.6.1 Transformer Schematic
    • 1.6.2 Three Common Transformers
    • 1.6.3 Foundation Model's Root is Transformers
    • 1.6.4 Why Need Foundation Model
    • 1.6.5 No Code, Only NAS
    • 1.6.6 End-to-end without Manual Rules
    • 1.6.7 Transformer-based End-to-end Target Detection
    • 1.6.8 BEV + Transformer is "Feature-level Fusion"
  • 1.7 End-to-end Foundation Model Cases
    • 1.7.1 Case 1 (1)
    • 1.7.2 Case 2 (2)
    • 1.7.3 Case 3 (3)

2 Overview of AI Foundation Model and Intelligent Computing Center

  • 2.1 AI Foundation Model
    • 2.1.1 Introduction
    • 2.1.2 Development Background
    • 2.1.3 Development History
    • 2.1.4 Position
    • 2.1.5 Business Mode
    • 2.1.6 Challenges and Future Development Trends of Implementation
    • 2.1.7 Continuous Iteration of Technical Architecture + Parameter Size
  • 2.2 Application of AI Foundation Model in Automotive
    • 2.2.1 Application Direction
    • 2.2.2 Application in Intelligent Cockpit (1)
    • 2.2.3 Application in Intelligent Cockpit (2)
    • 2.2.4 Application in Intelligent Cockpit (3)
    • 2.2.5 Application Challenges
    • 2.2.6 Vehicle Models in China That Already Have and Will Soon Carry AI Foundation Models
  • 2.3 Autonomous Driving (AD) Multimodal Basic Foundation Model
    • 2.3.1 Application Scenarios
    • 2.3.2 Typical Applications
    • 2.3.3 Typical Applications and Limitations Analysis
    • 2.3.4 Major Adaptable Scenarios and Applications
    • 2.3.5 Adaptation Scenario Cases
    • 2.3.6 AD World Model and Video Generation
    • 2.3.7 AD VFM: Adaptable Scenarios and Main Applications
    • 2.3.8 AD: Simulation Data Generation and Scenario Reconstruction
  • 2.4 Intelligent Computing Center
    • 2.4.1 Introduction
    • 2.4.2 Development History in China
    • 2.4.3 2.0 Era
    • 2.4.4 Construction
    • 2.4.5 Industry Chain
    • 2.4.6 Overall Architecture Diagram
    • 2.4.7 Development Trend (1)
    • 2.4.8 Development Trend (2)
    • 2.4.9 Development Trend (3)
    • 2.4.10 Development Trend (4)
    • 2.4.11 Reasons for Building AD Intelligent Computing Center
    • 2.4.12 Costs of Building AD Intelligent Computing Center
    • 2.4.13 Problems in Building AD Intelligent Computing Center
    • 2.4.14 AI Foundation Model and Computing Power Configuration of AD Companies
    • 2.4.15 Modes of OEMs Introducing Foundation Models
    • 2.4.16 Summary of Foundation Model and Intelligent Computing Center Progress in Automotive Industry (Suppliers)
    • 2.4.17 Summary of Foundation Model and Intelligent Computing Center Progress in Automotive Industry (OEMs)

3 Tesla Algorithm and Foundation Model Analysis

  • 3.1 Algorithm Fusion of CNN and Transformer
    • 3.1.1 Development of Visual Perception Frameworks
    • 3.1.2 Visual Algorithm Architecture
    • 3.1.3 Visual Algorithm Architecture (with NeRF)
    • 3.1.4 Visual Algorithm Skeleton, Neck, and Head
    • 3.1.5 Visual System Core: HydraNet
    • 3.1.6 2D to 3D Images
    • 3.1.7 Comparison of Swin Transformer with Traditional CNN Backbone
    • 3.1.8 Backbone RegNet
    • 3.1.9 Visual BiFPN
  • 3.2 Transformer Turns 2D into 3D
    • 3.2.1 Transformer, BEV and Vector Space Expression
    • 3.2.2 Image-to-BEV Transformer
    • 3.2.3 Occupancy Network
    • 3.2.4 DETR 3D Architecture
    • 3.2.5 Transformer Model
    • 3.2.6 3D Target Detection
  • 3.3 Occupancy Network, Semantic Segmentation and Time-space Sequence
    • 3.3.1 Vision Framework
    • 3.3.2 3D Target Detection and 3D Semantic Segmentation
    • 3.3.3 Deconvolution
    • 3.3.4 Video Neural Network Architecture
    • 3.3.5 Feature Queue
    • 3.3.6 Feature Queue - Time
    • 3.3.7 Feature Queue - Space
  • 3.4 LaneGCN and Search Tree
    • 3.4.1 Lane Neural Network
    • 3.4.2 Vector Map
    • 3.4.3 LaneGCN Architecture
    • 3.4.4 AR Model
    • 3.4.5 MCTS for Trajectory Planning
    • 3.4.6 MCTS Algorithm for Optimizing Core Ideas
  • 3.5 Data Closed Loop and Data Engine
    • 3.5.1 Shadow Mode
    • 3.5.2 Data Engine
    • 3.5.3 Data Engine Case

4 AI Algorithms and Foundation Model Providers

  • 4.1 Haomo.ai
    • 4.1.1 Profile
    • 4.1.2 Data Intelligence System
    • 4.1.3 Intelligent Computing Center
    • 4.1.4 Research and Application of Foundation Models
    • 4.1.5 Five Models of MANA
    • 4.1.6 Self-supervised Foundation Model
    • 4.1.7 Dynamic Environment Foundation Model
    • 4.1.8 Sources of Data
    • 4.1.9 Assistance of Five Foundation Models and Intelligent Computing Center to Haomo.ai
    • 4.1.10 Launch of DriveGPT
    • 4.1.11 Comparison between DriveGPT and ChatGPT
    • 4.1.12 2023 Haomo.ai AI Day: AD Semantic Perception Foundation Model
    • 4.1.13 2023 Haomo.ai AI Day: AD 3.0 Era
    • 4.1.14 2023 Haomo.ai AI Day: Introducing External Foundation Model
    • 4.1.15 2023 Haomo.ai AI Day: Automatic Annotation
  • 4.2 QCraft
    • 4.2.1 Profile
    • 4.2.2 Ultra-fusion Perception Framework
    • 4.2.3 Feature and Timing Fusion Foundation Model
    • 4.2.4 OmniNet Foundation Model Promotes the Implementation of Production Solutions
    • 4.2.5 Predictive Algorithm Model
    • 4.2.6 AD R&D Toolchain - QCraft Matrix
  • 4.3 Baidu
    • 4.3.1 Baidu Apollo and Foundation Model
    • 4.3.2 AI Base of Baidu Intelligent Cloud
    • 4.3.3 ERNIE Foundation Model
    • 4.3.4 Application of ERNIE Foundation Model in Automotive Industry
    • 4.3.5 ERNIE Foundation Model Improves Baidu's Perception Algorithm Capabilities
    • 4.3.6 Baidu Intelligent Computing Center
    • 4.3.7 Baidu Officially Launched ERNIE Bot
  • 4.4 Inspur
    • 4.4.1 Profile
    • 4.4.2 Three Highlights of Huaihai Intelligent Computing Center
    • 4.4.3 Yuan 2.0 Foundation Model
    • 4.4.4 AD Computing Framework AutoDRRT
    • 4.4.5 Inspur Helps XX Automotive Intelligent Computing Center Building
  • 4.5 SenseTime
    • 4.5.1 Profile
    • 4.5.2 Sensenova Foundation Model Base
    • 4.5.3 Sensenova * SenseChat Multimodal Foundation Model
    • 4.5.4 Sensenova Foundation Model System
    • 4.5.5 Artificial Intelligence Data Center (AIDC)
    • 4.5.6 Foundation Model Application in Cockpit
    • 4.5.7 SenseAuto Empower
    • 4.5.8 UniAD Foundation Model
    • 4.5.9 AD Foundation Model
  • 4.6 Huawei
    • 4.6.1 Pangu Model 3.0
    • 4.6.2 Pre-annotation Foundation Model
    • 4.6.3 Scenario Generation Foundation Model and Foundation Model Cost Reduction
    • 4.6.4 Data Closed Loop Toolchain
    • 4.6.5 Computing Power Scale
  • 4.7 Unisound
    • 4.7.1 Launched Shanhai Foundation Model
    • 4.7.2 AI Application in Cockpit
  • 4.8 iFLYTEK
    • 4.8.1 Released "Spark" Cognitive Foundation Model
    • 4.8.2 "Spark" Cognitive Foundation Model Applied to Intelligent Cockpit
    • 4.8.3 Investment in Cognitive Foundation Model and Value Realization Approach
    • 4.8.4 "Spark" Foundation Model V3.0 Upgrades Cockpit, Sound and Intelligent Driving Functions
  • 4.9 AISpeech
    • 4.9.1 Released Language Foundation Model and Signed with Several Auto Companies
    • 4.9.2 DFM-2 Foundation Model
    • 4.9.3 Foundation Model Development Plan
    • 4.9.4 Automotive Scenarios of Foundation Model
  • 4.10 Megvii Technology
    • 4.10.1 AD Solution
    • 4.10.2 AD Algorithm Model
    • 4.10.3 General World Model for AD
  • 4.11 Volcengine
    • 4.11.1 Profile
    • 4.11.2 Launched Volcano Ark Foundation Model
    • 4.11.3 Foundation Model Implementation
  • 4.12 Tencent Cloud
    • 4.12.1 Profile
    • 4.12.2 Tencent Cloud Helps to Implement Intelligent Driving Foundation Model
    • 4.12.3 Tencent Cloud's Project Cases
  • 4.13 Other Companies
    • 4.13.1 Banma Zhixing
    • 4.13.2 ThunderSoft
    • 4.13.3 Horizon Robotics' End-side Deployment of Foundation Model
  • ........................

5 Foundation Model of OEMs

  • 5.1 Xpeng Motor
    • 5.1.1 Profile
    • 5.1.2 Transformer Foundation Model
    • 5.1.3 Data Processing
    • 5.1.4 Fuyao Intelligent Computing Center
    • 5.1.5 Foundation Model Application
    • 5.1.6 XBrain Intelligent Driving Foundation Model
    • 5.1.7 XGPT Foundation Model
  • 5.2 Li Auto
    • 5.2.1 Profile
    • 5.2.2 Application of Foundation Model in Li Auto AD
    • 5.2.3 NPN and TIN
    • 5.2.4 Dynamic BEV
    • 5.2.5 DriveVLM-Dual: Visual Language Model (VLM) + Autonomous Driving Modular Pipeline
    • 5.2.6 Foundation Model Installation
    • 5.2.7 Smart Space 3.0 Connected to Mind GPT
    • 5.2.8 Foundation Model Mind GPT Progress
    • 5.2.9 In-Cabin Interaction Capabilities with Mind GPT
  • 5.3 Geely
    • 5.3.1 Profile
    • 5.3.2 Geely Xingrui Computing Center
    • 5.3.3 Leading Technologies of Geely Xingrui Computing Center
    • 5.3.4 Capabilities of Geely Xingrui Computing Center
    • 5.3.5 Geely Xingrui AI Foundation Model
    • 5.3.6 Geely-Baidu ERNIE Foundation Model
    • 5.3.7 Geely OCC Installation
  • 5.4 BYD
    • 5.4.1 AI Foundation Model Layout
    • 5.4.2 Xuanji Architecture
    • 5.4.3 Xuanji Architecture: Integration of Xuanji AI Foundation Model in Vehicles
    • 5.4.4 Xuanji Architecture: Quad-Chain AI Foundation Model Layout
    • 5.4.5 Xuanji Architecture: BEV Perception Model
    • 5.4.6 Xuanji Architecture: Decision Planning Foundation Model
    • 5.4.7 Vehicle Intelligence AI Foundation Model Layout
    • 5.4.8 AI Foundation Model Development Plan
  • 5.5 GM
    • 5.5.1 Launch of In-vehicle Voice Assistant Based on ChatGPT Technology
    • 5.5.2 GM and Google Cooperate on AI
  • 5.6 Changan Automobile
    • 5.6.1 Layout of AI Foundation Model and Intelligent Computing Center
    • 5.6.2 Deepal GPT
  • 5.7 Other Auto Enterprises
    • 5.7.1 GWM: All-round Layout of AI Foundation Model
    • 5.7.2 Chery: EXEED STERRA ES Equipped with Cognitive Foundation Model
    • 5.7.3 GAC
    • 5.7.4 SAIC-GM-Wuling
    • 5.7.5 Mercedes-Benz
    • 5.7.6 Volkswagen
    • 5.7.7 Stellantis
    • 5.7.8 PSA

6 Application Trends of Sora and AI Foundation Model in Automotive

  • 6.1 Analysis of Sora Text-to-Video Foundation Model
    • 6.1.1 Basic Functions
    • 6.1.2 Application Cases
    • 6.1.3 Case Analysis
    • 6.1.4 Basic Principles and Social Value
    • 6.1.5 Introduction of Basic Principles
    • 6.1.6 Advantages and Limitations
    • 6.1.7 Prospects and Future
  • 6.2 Explanation of Sora's Underlying Algorithm Architecture
    • 6.2.1 Sora Text-to-Video Foundation Model: Basic System Introduction
    • 6.2.2 Interpreting Sora Module: Spacetime latent patches
    • 6.2.3 Interpreting Sora Module: Video compression network
    • 6.2.4 Interpreting Sora Module: Video compression network
    • 6.2.5 Interpreting Sora Module: Scaling transformers
  • 6.3 Generative World Model and Intelligent Vehicle Industry
    • 6.3.1 Impacts of Sora on Intelligent Vehicle Industry and Forecast
    • 6.3.2 Comparison of Video Generation Capabilities between Sora and Tesla FSD-GWM
    • 6.3.3 Wayve Generative World Model
    • 6.3.4 Wayve Generative World Model System Architecture
    • 6.3.5 Multimodal Generative World Model of KIT University
  • 6.4 Application Trends of AI Foundation Model in Automotive
    • 6.4.1 Trend 1
    • 6.4.2 Trend 1: Case
    • 6.4.3 Trend 2
    • 6.4.4 Trend 3
    • 6.4.5 Trend 4
    • 6.4.6 Trend 5
  • 6.5 AI Foundation Model Requirements for Chips
    • 6.5.1 Requirement 1
    • 6.5.2 Requirement 2
    • 6.5.3 Requirement 3
    • 6.5.4 Requirement 4
    • 6.5.5 Requirement 5
    • 6.5.6 Storage Chips Are Very Important in Foundation Model Era
    • 6.5.7 How to Solve Storage Bottleneck Problems (1)
    • 6.5.8 How to Solve Storage Bottleneck Problems (2)
    • 6.5.9 How to Solve Storage Bottleneck Problems (3)
    • 6.5.10 Emerging Carmakers Learn Tesla and Self-develop NPUs
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제