½ÃÀ庸°í¼­
»óǰÄÚµå
1776751

mRNA Ä¡·áÁ¦ ½ÃÀå ¿¹Ãø(-2032³â) : À¯Çüº°, mRNA À¯Çüº°, Àü´Þ ½Ã½ºÅÛº°, Åõ¿© °æ·Îº°, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº° ¼¼°è ºÐ¼®

mRNA Therapeutics Market Forecasts to 2032 - Global Analysis By Type, mRNA Type, Delivery System, Route of Administration, Application, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ mRNA Ä¡·áÁ¦ ½ÃÀåÀº 2025³â¿¡ 166¾ï 5,000¸¸ ´Þ·¯¸¦ Â÷ÁöÇÏ¸ç ¿¹Ãø ±â°£ Áß CAGRÀº 19.05%·Î ¼ºÀåÇϸç, 2032³â¿¡´Â 564¾ï 4,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

mRNA Ä¡·áÁ¦´Â ¸Þ½ÅÀú RNA(mRNA)¸¦ ÀÌ¿ëÇÏ¿© Áúº´ÀÇ ¿¹¹æ°ú Ä¡·á¿¡ ÇÊ¿äÇÑ ´Ü¹éÁú »ý»êÀ» ¼¼Æ÷¿¡ Áö½ÃÇÏ´Â »õ·Î¿î Ä¡·á¹ýÀÔ´Ï´Ù. ÇÕ¼º mRNA¸¦ ü³»·Î Àü´ÞÇÔÀ¸·Î½á ¿ÜºÎ¿¡¼­ ´Ü¹éÁúÀ» Åõ¿©ÇÏ´Â °ÍÀÌ ¾Æ´Ï¶ó ¼¼Æ÷°¡ Á÷Á¢ Ä¡·á¿ë ´Ü¹éÁúÀ» »ý»êÇÒ ¼ö ÀÖµµ·Ï ÇÏ´Â Ä¡·á¹ýÀÔ´Ï´Ù. mRNA Ä¡·áÁ¦´Â COVID-19 ¹é½Å¿¡¼­ÀÇ ¿ªÇÒ·Î Å« ÁÖ¸ñÀ» ¹Þ°í ÀÖÀ¸¸ç, ¾Ï, À¯ÀüÁúȯ, °¨¿°Áúȯ µîÀÇ Ä¡·áÁ¦·Î ¿¬±¸µÇ°í ÀÖ½À´Ï´Ù.

¼¼°èº¸°Ç±â±¸(WHO)¿¡ µû¸£¸é 2022³â¿¡´Â 1,000¸¸ ¸í ÀÌ»óÀÌ ¾ÏÀ¸·Î »ç¸ÁÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, °áÇÙ°ú µ¶°¨ µî °¨¿°¼º ÁúȯÀº ¸Å³â ¼ö¹é¸¸ ¸íÀÌ °è¼Ó ¹ßº´Çϰí ÀÖ½À´Ï´Ù.

¸¸¼ºÁúȯ ¹× °¨¿°¼º ÁúȯÀÇ È®»ê

µ¶°¨, HIV, ½ÅÁ¾ ¹ÙÀÌ·¯½ºÀÇ À§ÇùÀ» Æ÷ÇÔÇÑ °¨¿°¼º ÁúȯÀº ½Å¼Ó ¹ÝÀÀ¼º ¹é½Å Ç÷§ÆûÀÇ Çʿ伺À» ´õ¿í °­Á¶Çϰí ÀÖ½À´Ï´Ù. COVID-19 ÆÒµ¥¹Í »óȲ¿¡¼­ mRNA ¹é½ÅÀÇ ¼º°øÀº ÀÌ Ç÷§ÆûÀÇ ÀáÀç·ÂÀ» ÀÔÁõÇÏ°í ±× Ã¤ÅÃÀ» °¡¼ÓÈ­Çß½À´Ï´Ù. Á¤ºÎ ¹× ÀÇ·á½Ã½ºÅÛÀº Àü¿°º´¿¡ ´ëÇÑ ´ëºñ¸¦ °­È­ÇÏ°í ¹ÌÃæÁ· ÀÇ·á ¼ö¿ä¿¡ ´ëÀÀÇϱâ À§ÇØ mRNA ±â¼ú¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ±× °á°ú, Áúº´ÀÇ À¯ÇàÀÌ È®´ëµÇ°í ÀÖ´Â °ÍÀÌ mRNA Ä¡·áÁ¦ ½ÃÀå È®´ëÀÇ Å« °è±â°¡ µÇ°í ÀÖ½À´Ï´Ù.

³ôÀº Á¦Á¶-°³¹ß ºñ¿ë

Á¦Á¶ °øÁ¤¿¡´Â Ư¼ö Àåºñ, ¾ö°ÝÇÑ Ç°Áú°ü¸®, ÄݵåüÀÎ ¹°·ù°¡ ÇÊ¿äÇϸç, ÀÌ ¸ðµç °ÍÀÌ ³ôÀº ¿î¿µ ºñ¿ëÀÇ ¿äÀÎÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÁöÁú ³ª³ëÀÔÀÚ¿Í °°Àº ÷´Ü Àü´Þ ½Ã½ºÅÛÀÇ Çʿ伺Àº Á¦ÇüÀÇ º¹À⼺°ú ºñ¿ëÀ» Áõ°¡½Ãŵ´Ï´Ù. ÀÌ·¯ÇÑ °æÁ¦Àû ºÎ´ãÀº ƯÈ÷ Áß¼Ò±Ô¸ðÀÇ ¹ÙÀÌ¿ÀÅ×Å©³î·¯Áö ±â¾÷¿¡°Ô Å« ¾î·Á¿òÀ¸·Î ÀÛ¿ëÇϸç, ÁßÀú¼Òµæ ±¹°¡¿¡¼­´Â Á¢±ÙÀÌ Á¦Çѵ˴ϴÙ. ÀÓ»ó½ÃÇè°ú ±ÔÁ¦ Áؼö¿¡ ¼Ò¿äµÇ´Â ³ôÀº ºñ¿ëÀº »ó¿ëÈ­¸¦ ´õ¿í Áö¿¬½Ãŵ´Ï´Ù. ±× °á°ú, mRNA Ä¡·áÁ¦¿Í °ü·ÃµÈ °æÁ¦Àû ¹®Á¦´Â ¿©ÀüÈ÷ ½ÃÀå ¼ºÀåÀÇ ÁÖ¿ä ¾ïÁ¦¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù.

R&D ÅõÀÚ ¹× ÀÚ±Ý Áõ°¡

°¢±¹ Á¤ºÎ´Â Àü¿°º´¿¡ ´ëÇÑ ´ëºñ¸¦ °­È­Çϰí RNA ±â¹Ý ÀǾàǰÀÇ ±â¼ú Çõ½ÅÀ» Áö¿øÇϱâ À§ÇØ ¸¹Àº ÀÚ±ÝÀ» ¹èÁ¤Çϰí ÀÖ½À´Ï´Ù. Á¦¾à ´ë±â¾÷°ú ¹ÙÀÌ¿ÀÅ×Å© ½ºÅ¸Æ®¾÷µéÀº ¾Ï, Èñ±ÍÁúȯ, ÀÚ°¡¸é¿ªÁúȯ¿¡ ´ëÇÑ mRNA ±â¹Ý ¹é½Å°ú Ä¡·áÁ¦¸¦ Æ÷ÇÔÇÑ ÆÄÀÌÇÁ¶óÀÎÀ» È®ÀåÇϰí ÀÖ½À´Ï´Ù. Àü·«Àû Á¦ÈÞ, ¶óÀ̼±½Ì °è¾à, º¥Ã³Ä³ÇÇÅÐÀÇ ÀÚ±Ý À¯ÀÔÀ¸·Î ÀÓ»ó °³¹ß ¹× »ó¾÷È­°¡ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. ¹è¼Û ½Ã½ºÅÛ ¹× Á¦Á¶ÀÇ È®À强¿¡ ´ëÇÑ ±â¼úÀû Áøº¸µµ ÅõÀÚÀÚµéÀÇ ½Å·Ú¸¦ ¾ò°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÀÚº»ÀÇ À¯ÀÔ°ú ±â¼ú Çõ½ÅÀº ½ÃÀå È®´ë¿Í ´Ù°¢È­¿¡ Å« ±âȸ°¡ µÉ °ÍÀÔ´Ï´Ù.

ÄݵåüÀÎ ¹°·ù¿Í ¾ÈÁ¤¼º ¹®Á¦

mRNA º£À̽ºÀÇ ¸¹Àº Á¦Ç°µéÀº ¾ÈÁ¤¼ºÀ» À¯ÁöÇϱâ À§ÇØ -70¡ÉÀÇ Àú¿ÂÀ» ÇÊ¿ä·Î Çϸç, ƯÈ÷ ¿Üµý Áö¿ªÀ̳ª ÀÚ¿øÀÌ ÇÑÁ¤µÈ Áö¿ª¿¡¼­´Â ¹°·ù»óÀÇ ¾î·Á¿òÀÌ ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿ä±¸»çÇ×Àº À¯Åë ºñ¿ëÀ» Áõ°¡½Ã۰í, ƯÈ÷ ´ë±Ô¸ð ¿¹¹æÁ¢Á¾ Ä·ÆäÀÎ ±â°£ Áß Àü ¼¼°è Á¢±ÙÀ» º¹ÀâÇÏ°Ô ¸¸µì´Ï´Ù. ¶ÇÇÑ ¿î¼Û Áß ¿Âµµ º¯È­´Â Á¦Ç°ÀÇ À¯È¿¼º°ú ¾ÈÀü¼ºÀ» ¼Õ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ÇöÀç ³»¿­¼º Á¦Á¦ÀÇ °³¹ßÀÌ ÁøÇàµÇ°í ÀÖÁö¸¸, º¸±Þ¿¡´Â ¾ÆÁ÷ ÇѰ谡 ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¾ÈÁ¤¼º ¹®Á¦°¡ ÇØ°áµÉ ¶§±îÁö ÄݵåüÀÎ ÀÇÁ¸¼ºÀº mRNA Ä¡·áÁ¦ÀÇ È®À强°ú °øÁ¤¼ºÀ» °è¼Ó À§ÇùÇÒ °ÍÀÔ´Ï´Ù.

COVID-19ÀÇ ¿µÇâ:

COVID-19 ÆÒµ¥¹ÍÀº mRNA Ä¡·áÁ¦ »ê¾÷¿¡ ¸Å¿ì Áß¿äÇÑ »ç°ÇÀ¸·Î, mRNA Ä¡·áÁ¦ »ê¾÷À» Àü ¼¼°èÀÇ ÁÖ¸ñÀ» ¹Þ°Ô Çß½À´Ï´Ù. mRNA ¹é½ÅÀÇ ±ä±Þ»ç¿ë ½ÂÀÎÀº °¨¿°º´ ´ëÀÀ¿¡ ÀÖÀ¸¸ç, ÀÌ Ç÷§ÆûÀÇ ½Å¼Ó¼º, È¿°ú¼º, ÀûÀÀ¼ºÀ» ÀÔÁõÇß½À´Ï´Ù. ÀÌ·¯ÇÑ ¼º°øÀº mRNA ±â¼ú¿¡ ´ëÇÑ Àü·Ê ¾ø´Â ÅõÀÚ, ±ÔÁ¦ À¯¿¬¼º, ±×¸®°í »çȸÀû ½Å·Ú¸¦ ºÒ·¯ÀÏÀ¸Ä×½À´Ï´Ù. ±×·¯³ª ÆÒµ¥¹Í ÀÌÈÄ ¹é½Å ÆÇ¸Å·®ÀÌ °¨¼ÒÇÏ°í ¿¬±¸°³¹ß ¿ì¼±¼øÀ§°¡ ¹Ù²î´Â µî ¼ö¿äÀÇ ÀçÁ¶Á¤ÀÌ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. ±×·³¿¡µµ ºÒ±¸Çϰí Àü¿°º´Àº Á¾¾çÇÐ, Èñ±ÍÁúȯ, ¸ÂÃãÀÇ·á¿¡ mRNA¸¦ ±¤¹üÀ§ÇÏ°Ô ÀÀ¿ëÇÒ ¼ö ÀÖ´Â Åä´ë¸¦ ¸¶·ÃÇß½À´Ï´Ù.

¿¹Ãø ±â°£ Áß ¿¹¹æ¹é½Å ºÐ¾ß°¡ °¡Àå Ŭ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¿¹¹æ¹é½Å ºÐ¾ß´Â °¨¿°º´ ¿¹¹æ¿¡ ´ëÇÑ ¼º°ú·Î ÀÎÇØ ¿¹Ãø ±â°£ Áß °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. COVID-19 mRNA ¹é½ÅÀÇ ½Å¼ÓÇÑ °³¹ß ¹× ¹èÆ÷¸¦ ÅëÇØ ÀÌ Ç÷§ÆûÀÌ Àü ¼¼°è °øÁߺ¸°Ç ºñ»ó»çÅ¿¡ ´ëÀÀÇÒ ¼ö ÀÖ´Ù´Â °ÍÀ» º¸¿©ÁÖ¾ú½À´Ï´Ù. ¿¹¹æ¿ë mRNA ¹é½ÅÀº ³ôÀº È¿´É, ºü¸¥ È®À强, »õ·Î¿î º¯Á¾¿¡ ´ëÇÑ ÀûÀÀ¼º µîÀÇ ÀåÁ¡ÀÌ ÀÖ½À´Ï´Ù. ±ÔÁ¦ ´ç±¹ÀÇ Áö¿ø°ú °øÁß º¸°Ç¿¡ ´ëÇÑ ³ë·ÂÀº ¼±Áø±¹°ú °³¹ßµµ»ó±¹ ¸ðµÎ¿¡¼­ äÅÃÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ Áß ¿¬±¸±â°ü ºÎ¹®ÀÌ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¿¹Ãø ±â°£ Áß ¿¬±¸±â°ü ºÎ¹®ÀÌ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ´Â Á¤ºÎ ¹× Çмú±â°üÀÇ ÀÚ±Ý Áö¿øÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ¿¬±¸ ±â°üÀÌ °¨¿° ÀÌ¿ÜÀÇ »õ·Î¿î mRNA ¿ëµµ¸¦ Ž»öÇÒ ¼ö ÀÖ°Ô µÇ¾ú±â ¶§¹®ÀÔ´Ï´Ù. Çаè¿Í »ê¾÷°èÀÇ Çù¾÷Àº ±â¼ú Çõ½ÅÀ» °¡¼ÓÈ­ÇÏ°í ±â¼ú ÀÌÀüÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¸ÂÃãÇü ÀÇ·á¿Í Èñ±ÍÁúȯ ¿¬±¸¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁø °Íµµ Çмú ȯ°æ¿¡¼­ mRNA ±â¹Ý ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ±× °á°ú, ¿¬±¸±â°üÀº mRNA Ä¡·á »ýŰ迡¼­ ¿ªµ¿ÀûÀÎ ¼ºÀå µ¿·ÂÀ¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù.

°¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª

¿¹Ãø ±â°£ Áß ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Áß±¹, Àεµ, ÀϺ», Çѱ¹ µîÀÇ ±¹°¡µéÀº »ý¸í°øÇÐ ÀÎÇÁ¶ó¿Í ¹é½Å »ý»ê ´É·Â¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. ÀÇ·áºñ ÁöÃâ Áõ°¡, ȯÀÚ ¼ö Áõ°¡, Á¤ºÎ Áö¿ø Á¤Ã¥ÀÌ Áö¿ª ¼ö¿ä¸¦ °ßÀÎÇϰí ÀÖ½À´Ï´Ù. ÇöÁö ±â¾÷Àº ¼¼°è ±â¾÷°ú Àü·«Àû Á¦ÈÞ¸¦ ¸Î°í mRNA °³¹ß ¹× À¯Åë¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ COVID-19¿¡ ´ëÇÑ ÀÌ Áö¿ªÀÇ Àû±ØÀûÀÎ ´ëÀÀÀº ÇâÈÄ mRNA ±â¹Ý °³ÀÔÀ» À§ÇÑ ÅºÅºÇÑ Åä´ë¸¦ ¸¶·ÃÇϰí ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª:

¿¹Ãø ±â°£ Áß ºÏ¹Ì°¡ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ Áö¿ªÀº źźÇÑ »ý¸í°øÇÐ »ýŰè, ÷´ÜÀÎ ¿¬±¸°³¹ß ÀÎÇÁ¶ó, °­·ÂÇÑ ±ÔÁ¦ Áö¿øÀÇ ÇýÅÃÀ» ´©¸®°í ÀÖ½À´Ï´Ù. Moderna, Pfizer-BioNTech µî ÁÖ¿ä ±â¾÷ÀÌ ÀÌ Áö¿ª¿¡ º»»ç¸¦ µÎ°í ±â¼ú Çõ½Å°ú »ó¿ëÈ­¸¦ ÃßÁøÇϰí ÀÖ½À´Ï´Ù. Á¤ºÎ ±¸»ó°ú ÀÚ±Ý Áö¿ø ÇÁ·Î±×·¥Àº Ä¡·á ºÐ¾ß Àü¹Ý¿¡ °ÉÃÄ mRNA ¿¬±¸¸¦ Áö¼ÓÀûÀ¸·Î Áö¿øÇϰí ÀÖ½À´Ï´Ù. ¸ÂÃãÇü ÀÇ·á¿Í Á¾¾çÇп¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ ½ÃÀå ¼ºÀåÀ» ´õ¿í °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù.

¹«·á Ä¿½ºÅ͸¶ÀÌ¡ ¼­ºñ½º:

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ±â¾÷¼Ò°³
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀûÀÎ ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3»ç)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(ÃÖ´ë 3»ç)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ µû¸¥ ÁÖ¿ä ±¹°¡º° ½ÃÀå Ã߻ꡤ¿¹Ãø¡¤CAGR(ÁÖ: Ÿ´ç¼º °ËÅä¿¡ µû¶ó ´Ù¸§)
  • °æÀï»ç º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¿ªÀû ÀÔÁö, Àü·«Àû Á¦ÈÞ¿¡ ±â¹ÝÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå °³¿ä

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç ¾îÇÁ·ÎÄ¡
  • Á¶»ç ÀÚ·á
    • 1Â÷ Á¶»ç ÀÚ·á
    • 2Â÷ Á¶»ç Á¤º¸¿ø
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ÃËÁø¿äÀÎ
  • ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ¿ëµµ ºÐ¼®
  • ÃÖÁ¾»ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
  • ¹ÙÀ̾îÀÇ ±³¼··Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô ÁøÃâ¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷ °£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ mRNA Ä¡·áÁ¦ ½ÃÀå : À¯Çüº°

  • ¿¹¹æ ¹é½Å
  • Ä¡·á ¹é½Å
  • ¸ð³ëŬ·Î³Î Ç×ü
  • À¯ÀüÀÚ ÆíÁý ¿ä¹ý
  • ´Ü¹éÁú º¸Ãæ ¿ä¹ý
  • ±âŸ À¯Çü

Á¦6Àå ¼¼°èÀÇ mRNA Ä¡·áÁ¦ ½ÃÀå : mRNA À¯Çüº°

  • ±âÁ¸ ºñÁõÆøÇü
  • ÀÚ±â ÁõÆø

Á¦7Àå ¼¼°èÀÇ mRNA Ä¡·áÁ¦ ½ÃÀå : Àü´Þ ½Ã½ºÅÛº°

  • ÁöÁú ³ª³ëÀÔÀÚ(LNP)
  • ¾çÀ̿ ³ª³ë¿¡¸ÖÀü
  • Æú¸®¸Ó ±â¹Ý ij¸®¾î
  • ÆéƼµå ±â¹Ý ij¸®¾î
  • ±âŸ Àü´Þ ½Ã½ºÅÛ

Á¦8Àå ¼¼°èÀÇ mRNA Ä¡·áÁ¦ ½ÃÀå : Åõ¿© °æ·Îº°

  • ±ÙÀ°³»
  • Á¤¸Æ³»
  • ÇÇÇÏ
  • Çdz»

Á¦9Àå ¼¼°èÀÇ mRNA Ä¡·áÁ¦ ½ÃÀå : ¿ëµµº°

  • °¨¿°Áõ
  • ¾Ï
  • À¯Àü¼º Áúȯ
  • ½ÉÇ÷°üÁúȯ
  • ÀÚ°¡¸é¿ªÁúȯ
  • È£Èí±âÁúȯ
  • ±âŸ ¿ëµµ

Á¦10Àå ¼¼°èÀÇ mRNA Ä¡·áÁ¦ ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • º´¿ø°ú Áø·á¼Ò
  • °è¾à Á¶»ç±â°ü(CRO)
  • Á¶»ç±â°ü
  • ¹ÙÀÌ¿ÀÀǾàǰ ±â¾÷
  • ±âŸ ÃÖÁ¾»ç¿ëÀÚ

Á¦11Àå ¼¼°èÀÇ mRNA Ä¡·áÁ¦ ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦12Àå ÁÖ¿ä ¹ßÀü

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷, Á¶ÀÎÆ® º¥Ã³
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦13Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • ModernaTX, Inc.
  • Shape Therapeutics
  • BioNTech SE
  • Orbital Therapeutics
  • Pfizer Inc.
  • Beam Therapeutics Inc.
  • AstraZeneca plc
  • Sangamo Therapeutics
  • Sanofi
  • Ethris GmbH
  • GlaxoSmithKline plc(GSK)
  • Gennova Biopharmaceuticals Limited
  • CureVac N.V.
  • Daiichi Sankyo Company, Limited
  • Arcturus Therapeutics Holdings Inc.
  • Vertex Pharmaceuticals Incorporated
KSA 25.08.04

According to Stratistics MRC, the Global mRNA Therapeutics Market is accounted for $16.65 billion in 2025 and is expected to reach $56.44 billion by 2032 growing at a CAGR of 19.05% during the forecast period. mRNA therapeutics are a novel class of medical treatments that utilize messenger RNA (mRNA) to instruct cells to produce proteins necessary for preventing or treating diseases. By delivering synthetic mRNA into the body, these therapies enable cells to generate therapeutic proteins directly, rather than administering the proteins externally. This approach offers high specificity, flexibility, and rapid development potential. mRNA therapeutics have gained significant attention for their role in COVID-19 vaccines and are being explored for cancer, genetic disorders, and infectious diseases.

According to the World Health Organization, over 10 million people died from cancer in 2022, and infectious diseases like tuberculosis and influenza continue to affect millions annually.

Market Dynamics:

Driver:

Growing prevalence of chronic and infectious diseases

Infectious diseases, including influenza, HIV, and emerging viral threats, have further underscored the need for rapid-response vaccine platforms. mRNA therapeutics offer a flexible and scalable solution, enabling faster development timelines compared to traditional biologics. The success of mRNA vaccines during the COVID-19 pandemic has validated the platform's potential and accelerated its adoption. Governments and healthcare systems are investing in mRNA technologies to strengthen pandemic preparedness and address unmet medical needs. As a result, the growing disease prevalence is a major catalyst for the expansion of the mRNA therapeutics market.

Restraint:

High production and development costs

The manufacturing process requires specialized equipment, stringent quality controls, and cold chain logistics, all of which contribute to high operational expenses. Additionally, the need for advanced delivery systems like lipid nano-particles adds complexity and cost to formulation. These financial burdens are particularly challenging for smaller biotech firms and limit accessibility in low- and middle-income countries. The high cost of clinical trials and regulatory compliance further slows down commercialization. Consequently, the economic challenges associated with mRNA therapeutics remain a key restraint to market growth.

Opportunity:

Increased R&D investments and funding

Governments are allocating substantial funding to bolster pandemic preparedness and support innovation in RNA-based medicine. Pharmaceutical giants and biotech startups alike are expanding their pipelines to include mRNA-based vaccines and treatments for cancer, rare diseases, and autoimmune disorders. Strategic collaborations, licensing deals, and venture capital inflows are accelerating clinical development and commercialization. Technological advancements in delivery systems and manufacturing scalability are also attracting investor confidence. This influx of capital and innovation presents a significant opportunity for market expansion and diversification.

Threat:

Cold chain logistics and stability issues

Many mRNA-based products require temperatures as low as -70°C to maintain stability, posing logistical hurdles, especially in remote or resource-limited regions. These requirements increase distribution costs and complicate global access, particularly during large-scale immunization campaigns. Additionally, temperature excursions during transit can compromise product efficacy and safety. Efforts are underway to develop thermostable formulations, but widespread implementation remains limited. Until these stability issues are resolved, cold chain dependency will continue to threaten the scalability and equity of mRNA therapeutics.

Covid-19 Impact:

The COVID-19 pandemic served as a pivotal moment for the mRNA therapeutics industry, propelling it into the global spotlight. Emergency use authorizations for mRNA vaccines demonstrated the platform's speed, efficacy, and adaptability in combating infectious diseases. This success catalyzed unprecedented investment, regulatory flexibility, and public trust in mRNA technologies. However, the post-pandemic period has seen a recalibration of demand, with declining vaccine sales and shifting R&D priorities. Despite this, the pandemic laid the groundwork for broader applications of mRNA in oncology, rare diseases, and personalized medicine.

The prophylactic vaccines segment is expected to be the largest during the forecast period

The prophylactic vaccines segment is expected to account for the largest market share during the forecast period, due to its proven success in preventing infectious diseases. The rapid development and deployment of COVID-19 mRNA vaccines showcased the platform's ability to respond to global health emergencies. Prophylactic mRNA vaccines offer advantages such as high efficacy, rapid scalability, and adaptability to emerging variants. Regulatory support and public health initiatives are further driving adoption across both developed and developing regions.

The research institutes segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the research institutes segment is predicted to witness the highest growth rate, attributed to increased government and academic funding is enabling institutes to explore novel mRNA applications beyond infectious diseases. Collaborations between academia and industry are accelerating innovation and facilitating technology transfer. The growing emphasis on personalized medicine and rare disease research is also fueling demand for mRNA-based solutions in academic settings. As a result, research institutes are emerging as dynamic growth engines within the mRNA therapeutics ecosystem.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share. Countries like China, India, Japan, and South Korea are investing heavily in biotechnology infrastructure and vaccine manufacturing capabilities. Rising healthcare expenditure, a large patient population, and supportive government policies are driving regional demand. Local companies are forming strategic alliances with global players to accelerate mRNA development and distribution. Additionally, the region's proactive response to COVID-19 has laid a strong foundation for future mRNA-based interventions.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR. The region benefits from a robust biotech ecosystem, advanced R&D infrastructure, and strong regulatory support. Leading companies such as Moderna and Pfizer-BioNTech are headquartered here, driving innovation and commercialization. Government initiatives and funding programs continue to support mRNA research across therapeutic areas. The growing focus on personalized medicine and oncology is further accelerating market growth.

Key players in the market

Some of the key players in mRNA Therapeutics Market include ModernaTX, Inc., Shape Therapeutics, BioNTech SE, Orbital Therapeutics, Pfizer Inc., Beam Therapeutics Inc., AstraZeneca plc, Sangamo Therapeutics, Sanofi, Ethris GmbH, GlaxoSmithKline plc (GSK), Gennova Biopharmaceuticals Limited, CureVac N.V., Daiichi Sankyo Company, Limited, Arcturus Therapeutics Holdings Inc., and Vertex Pharmaceuticals Incorporated.

Key Developments:

In June 2025, BioNTech SE and CureVac N.V. announced that they have entered into a definitive Purchase Agreement pursuant to which BioNTech intends to acquire all of the shares of CureVac, a clinical-stage biotech company developing a novel class of transformative medicines in oncology and infectious diseases based on messenger ribonucleic acid ("mRNA"). The all-stock transaction will bring together two highly complementary companies based in Germany.

In November 2023, ShapeTX announced the expansion of its partnership with Roche, with Roche adding a new target to their ongoing collaboration, which was initially established in August 2021. This expansion marks the beginning of a new program where ShapeTX will use its proprietary AI-powered RNA editing platform to develop a potential one-time therapy for patients with high unmet needs for an undisclosed disease affecting millions of people worldwide.

Types Covered:

  • Prophylactic Vaccines
  • Therapeutic Vaccines
  • Monoclonal Antibodies
  • Gene Editing Therapies
  • Protein Replacement Therapies
  • Other Types

mRNA Types Covered:

  • Conventional Non-amplifying
  • Self-amplifying

Delivery Systems Covered:

  • Lipid Nanoparticles (LNPs)
  • Cationic Nanoemulsions
  • Polymer-Based Carriers
  • Peptide-Based Carriers
  • Other Delivery Systems

Route of Administrations Covered:

  • Intramuscular
  • Intravenous
  • Subcutaneous
  • Intradermal

Applications Covered:

  • Infectious Diseases
  • Cancer
  • Genetic Disorders
  • Cardiovascular Diseases
  • Autoimmune Diseases
  • Respiratory Diseases
  • Other Applications

End Users Covered:

  • Hospitals & Clinics
  • Contract Research Organizations (CROs)
  • Research Institutes
  • Biopharmaceutical Companies
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global mRNA Therapeutics Market, By Type

  • 5.1 Introduction
  • 5.2 Prophylactic Vaccines
  • 5.3 Therapeutic Vaccines
  • 5.4 Monoclonal Antibodies
  • 5.5 Gene Editing Therapies
  • 5.6 Protein Replacement Therapies
  • 5.7 Other Types

6 Global mRNA Therapeutics Market, By mRNA Type

  • 6.1 Introduction
  • 6.2 Conventional Non-amplifying
  • 6.3 Self-amplifying

7 Global mRNA Therapeutics Market, By Delivery System

  • 7.1 Introduction
  • 7.2 Lipid Nanoparticles (LNPs)
  • 7.3 Cationic Nanoemulsions
  • 7.4 Polymer-Based Carriers
  • 7.5 Peptide-Based Carriers
  • 7.6 Other Delivery Systems

8 Global mRNA Therapeutics Market, By Route of Administration

  • 8.1 Introduction
  • 8.2 Intramuscular
  • 8.3 Intravenous
  • 8.4 Subcutaneous
  • 8.5 Intradermal

9 Global mRNA Therapeutics Market, By Application

  • 9.1 Introduction
  • 9.2 Infectious Diseases
  • 9.3 Cancer
  • 9.4 Genetic Disorders
  • 9.5 Cardiovascular Diseases
  • 9.6 Autoimmune Diseases
  • 9.7 Respiratory Diseases
  • 9.8 Other Applications

10 Global mRNA Therapeutics Market, By End User

  • 10.1 Introduction
  • 10.2 Hospitals & Clinics
  • 10.3 Contract Research Organizations (CROs)
  • 10.4 Research Institutes
  • 10.5 Biopharmaceutical Companies
  • 10.6 Other End Users

11 Global mRNA Therapeutics Market, By Geography

  • 11.1 Introduction
  • 11.2 North America
    • 11.2.1 US
    • 11.2.2 Canada
    • 11.2.3 Mexico
  • 11.3 Europe
    • 11.3.1 Germany
    • 11.3.2 UK
    • 11.3.3 Italy
    • 11.3.4 France
    • 11.3.5 Spain
    • 11.3.6 Rest of Europe
  • 11.4 Asia Pacific
    • 11.4.1 Japan
    • 11.4.2 China
    • 11.4.3 India
    • 11.4.4 Australia
    • 11.4.5 New Zealand
    • 11.4.6 South Korea
    • 11.4.7 Rest of Asia Pacific
  • 11.5 South America
    • 11.5.1 Argentina
    • 11.5.2 Brazil
    • 11.5.3 Chile
    • 11.5.4 Rest of South America
  • 11.6 Middle East & Africa
    • 11.6.1 Saudi Arabia
    • 11.6.2 UAE
    • 11.6.3 Qatar
    • 11.6.4 South Africa
    • 11.6.5 Rest of Middle East & Africa

12 Key Developments

  • 12.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 12.2 Acquisitions & Mergers
  • 12.3 New Product Launch
  • 12.4 Expansions
  • 12.5 Other Key Strategies

13 Company Profiling

  • 13.1 ModernaTX, Inc.
  • 13.2 Shape Therapeutics
  • 13.3 BioNTech SE
  • 13.4 Orbital Therapeutics
  • 13.5 Pfizer Inc.
  • 13.6 Beam Therapeutics Inc.
  • 13.7 AstraZeneca plc
  • 13.8 Sangamo Therapeutics
  • 13.9 Sanofi
  • 13.10 Ethris GmbH
  • 13.11 GlaxoSmithKline plc (GSK)
  • 13.12 Gennova Biopharmaceuticals Limited
  • 13.13 CureVac N.V.
  • 13.14 Daiichi Sankyo Company, Limited
  • 13.15 Arcturus Therapeutics Holdings Inc.
  • 13.16 Vertex Pharmaceuticals Incorporated
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦