½ÃÀ庸°í¼­
»óǰÄÚµå
1797975

¼¼°èÀÇ Å©¶ó¿ìµå¼Ò½Ì ¹è¼Û ¼­ºñ½º ½ÃÀå ¿¹Ãø : ¹è¼Û À¯Çüº°, ºñÁî´Ï½º ¸ðµ¨º°, ¼­ºñ½º À¯Çüº°, Ç÷§Æû À¯Çüº°, Â÷·® À¯Çüº°, ÃÖÁ¾ »ç¿ëÀÚº°, Áö¿ªº° ¼¼°è ºÐ¼®(-2032³â)

Crowdsourced Delivery Service Market Forecasts to 2032 - Global Analysis By Delivery Type, Business Model (Business-to-Business, Business-to-Consumer and Consumer-to-Consumer ), Service Type, Platform Type, Vehicle Type, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ Å©¶ó¿ìµå¼Ò½Ì ¹è¼Û ¼­ºñ½º ½ÃÀåÀº 2025³â¿¡ 233¾ï ´Þ·¯¸¦ Â÷ÁöÇÏ¸ç ¿¹Ãø ±â°£ µ¿¾È CAGRÀº 11.4%¸¦ ³ªÅ¸³» 2032³â±îÁö´Â 498¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î Àü¸ÁµË´Ï´Ù.

Å©¶ó¿ìµå¼Ò½Ì ¹è¼Û ¼­ºñ½º´Â µ¶¸³µÈ, Á¾Á¾ ÇÁ·Î°¡ ¾Æ´Ñ ÅÃ¹è ¾÷üÀÇ ³×Æ®¿öÅ©¸¦ Ȱ¿ëÇÏ¿© °³ÀÎ Â÷·® ¹× ¸®¼Ò½º¸¦ ÀÌ¿ëÇÏ¿© ÅÃ¹è ¾÷¹«¸¦ ¼öÇàÇÕ´Ï´Ù. µðÁöÅÐ Ç÷§ÆûÀ» ÅëÇØ Á¶Á¤µÇ´Â ÀÌ ¸ðµ¨Àº ±â¾÷ ¹× °³Àΰú »ç¿ë °¡´ÉÇÑ µå¶óÀ̹ö¸¦ ½Ç½Ã°£À¸·Î ¿¬°áÇÏ¿© À¯¿¬ÇÑ ¿Âµð¸Çµå ¹°·ù¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÀÌ ¸ðµ¨Àº ƯÈ÷ µµ½Ã Áö¿ª¿¡¼­ ¶ó½ºÆ® ¿ø ¸¶ÀÏÀ» ¹è¼ÛÇÏ´Â µ¥ ºñ¿ë È¿À²ÀûÀ̰í È®Àå °¡´ÉÇÑ ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù. Å©¶ó¿ìµå¼Ò½ÌÀ» ÅëÇÑ ¹è¼ÛÀº È¿À²¼ºÀ» ³ôÀÌ°í ¿î¿µ ¿À¹öÇìµå¸¦ ÁÙÀÌ°í ½Å¼ÓÇÑ ¿Ï¼ºÀ» Áö¿øÇϹǷΠÀüÀÚ»ó°Å·¡, ½Äǰ ¹è¼Û ¹× ´çÀÏ ¹è¼Û ¿ä±¸¿¡ ÀÌ»óÀûÀÔ´Ï´Ù.

Journal of Business Logistics¿¡ µû¸£¸é, 2016³â 1¿ùºÎÅÍ 2021³â 8¿ù±îÁö 9¸¸ 8,134°ÇÀÇ °í°´ ¸®ºä¸¦ ºÐ¼®ÇÑ °á°ú, Å©¶ó¿ìµå¼Ò½Ì ¹è¼Û Á¦°øÀº ƯÈ÷ ½Ä·áǰ ¹× »ç¹«¿ëǰ µîÀÇ Æí¸®ÇÑ »óǰ¿¡ ´ëÇØ Á¤½Ã ¹è´Þ, ½Å·Ú¼º, Áö°¢µÇ´Â °¡°Ý °¡Ä¡ÀÇ °üÁ¡¿¡¼­ °í°´ ¸¸Á·µµ¸¦ ´ëÆø Çâ»ó½ÃŰ´Â °ÍÀ¸·Î ³ªÅ¸³µ½À´Ï´Ù.

ÀüÀÚ»ó°Å·¡ÀÇ ±Þ¼ºÀå°ú ¼ÒºñÀÚ ¼ö¿ä

¿Â¶óÀÎ ¼îÇÎÀÌ °è¼Ó ¼ºÀåÇÔ¿¡ µû¶ó ¼ÒºñÀÚ´Â ´Ù¾çÇÑ »óǰ¿¡ ´ëÇØ ´ÙÀ½³¯ ¹è¼Û»Ó¸¸ ¾Æ´Ï¶ó Á¾Á¾ ´çÀÏ ¹è¼Û ¹× Áï½Ã ¹è¼ÛÀ» ±â´ëÇÕ´Ï´Ù. ÀÌ ±â´ë´Â ƯÈ÷ µµ½É Áö¿ª¿¡¼­ ÀüÅëÀûÀÎ ¹è¼Û ¸ðµ¨ÀÌ Á¦°øÇÏ´Â µ¥ ¾î·Á¿òÀ» °Þ´Â À¯¿¬Çϰí È®Àå °¡´ÉÇÑ ¹°·ù ¼Ö·ç¼Ç¿¡ ´ëÇÑ ½É°¢ÇÑ ¿ä±¸¸¦ ¸¸µé¾î ³Â½À´Ï´Ù. Å©¶ó¿ìµå¼Ò½Ì ¹è¼Û ¼­ºñ½º´Â Áö¿ª µ¶¸³ ÅÃ¹è ¾÷üÀÇ ³×Æ®¿öÅ©¸¦ Ȱ¿ëÇÏ¿© ÀÌ ¼ö¿ä¿¡ ºÎÀÀÇϱâ À§ÇÑ ÃÖÀûÀÇ ÀÔÀå¿¡ ÀÖÀ¸¸ç, ÁÖ¹®¿¡ ½Å¼ÓÇÏ°Ô ´ëÀÀÇϰí, ÆäÀ̽º°¡ ºü¸¥ ¿Â¶óÀÎ ¼Ò¸Å ¾÷°è¿¡¼­ °æÀï·ÂÀ» À¯ÁöÇϱâ À§ÇÑ ¿ªµ¿ÀûÀÌ°í ºñ¿ë È¿À²ÀûÀÎ ¹æ¹ýÀ» ±â¾÷¿¡ Á¦°øÇÕ´Ï´Ù.

ǰÁú °ü¸®¿Í Àϰü¼º ¾ø´Â ¼­ºñ½º

¿îÀüÀÚ´Â Á¾Á¾ °æÇè ¼öÁØÀÌ ´Ù¸¥ ±â°¡ ÀÛ¾÷ÀÚÀ̱⠶§¹®¿¡ ¹è¼Û Áö¿¬, ¼öÇϹ° À߸ø Ãë±Þ, °í°´°úÀÇ ºÎÀûÀýÇÑ ´ëÀÀ µîÀÇ ¹®Á¦°¡ ¹ß»ýÇÒ ¼ö ÀÖ½À´Ï´Ù. Ç¥ÁØÈ­µÈ ±³À°À̳ª °¨µ¶ÀÌ ¾ø±â ¶§¹®¿¡ ½Å·Ú¼ºÀ» È®º¸Çϱâ À§ÇÑ ³ë·ÂÀÌ º¹ÀâÇØÁö°í ÀÖ½À´Ï´Ù. °Ô´Ù°¡ ÇÑ»ê±â³ª ¾ÇõÈĽà ¿îÀüÀÚÀÇ °¡µ¿·üÀÌ º¯µ¿ÇÏ¿© ¾÷¹«°¡ Áß´ÜµÇ¾î °í°´ ¸¸Á·µµ¿Í ºê·£µå Æò°¡¿¡ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù.

¸¶Áö¸· ¸¶ÀÏ µô¸®¹ö¸®¿Í µµ½ÃÇü ¹°·ù

¹ÐÁýµÈ µµ½Ã ȯ°æ¿¡¼­ ÀüÅëÀûÀÎ ¹°·ù °ø±ÞÀÚ´Â ±³Åë Á¤Ã¼, ÁÖÂ÷ °ï¶õ, ¹è¼Û °æ·ÎÀÇ ºÐ¿­°ú °°Àº Å« Àå¾Ö¿¡ Á÷¸éÇÕ´Ï´Ù. ±×·¯³ª Å©¶ó¿ìµå¼Ò½Ì ¸ðµ¨Àº Áö¿ª¿¡ Àͼ÷Çϰí ÀÚµ¿Â÷¿Í ½ºÄíÅÍ¿¡¼­ ÀÚÀü°Å¿¡ À̸£±â±îÁö ´Ù¾çÇÑ ±³Åë ¼ö´ÜÀ» ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ÇöÁö ÅÃ¹è ¾÷üÀÇ ³×Æ®¿öÅ©¸¦ Ȱ¿ëÇÔÀ¸·Î½á ÀÌ·¯ÇÑ ¹®Á¦¸¦ ÇÇÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ Á¢±Ù¹ýÀº ¶ó½ºÆ®¸¶ÀÏ µô¸®¹ö¸®¸¦ º¸´Ù È¿À²ÀûÀÌ°í ºñ¿ë È¿À²ÀûÀ̸ç ȯ°æ ģȭÀûÀÎ °ÍÀ¸·Î Çϸç, µµ½ÃÈ­°¡ ¼¼°èÀûÀ¸·Î °¡¼ÓÈ­µÇ°í ÀÖ´Â °¡¿îµ¥ Å« ¼ºÀå ±âȸ¸¦ Á¦°øÇÕ´Ï´Ù.

´ëü ±â¼ú°ú ±ÔÁ¦ ¹Ý¹ß

¹è´Þ¿ë ¹«ÀÎ Ç×°ø±â, ÀÚÀ²ÁÖÇà Â÷·®, ¶ó½ºÆ®¿ø ¸¶ÀÏ ·Îº¿ÀÇ °³¹ßÀº ƯÈ÷ µµ½Ã¿Í ±³¿Ü¿¡¼­ ƯÁ¤ À¯ÇüÀÇ ¹è´Þ¿¡¼­ Àΰ£ÀÇ ¹è´Þ¿øÀ» ÇÊ¿ä·Î ÇÏÁö ¾ÊÀ» °¡´É¼ºÀÌ ÀÖ½À´Ï´Ù. µ¿½Ã¿¡ ÀÌ ½ÃÀåÀº ±ÔÁ¦ ´ç±¹ÀÇ °¨½Ã¿Í ÀáÀçÀûÀÎ ¹ýÀû ¹Ý¹ß À§Çù¿¡ ³ëÃâµÇ¾î ÀÖ½À´Ï´Ù. Å©¶ó¿ìµå¼Ò½Ì Åùè¾÷ü¸¦ Á¾¾÷¿øÀÌ ¾Æ´Ñ µ¶¸³ÀûÀÎ °è¾à¾÷ü·Î »ï´Â ¹ýÀû ºÐ·ù°¡ ¸¹Àº Áö¿ª¿¡¼­ ½Î¿öÁö°í ÀÖÀ¸¸ç, ÀÌ·Î ÀÎÇØ ¾÷¹« ºñ¿ëÀÌ Å©°Ô Áõ°¡Çϰí Å©¶ó¿ìµå¼Ò½Ì ºñÁî´Ï½º ¸ðµ¨ÀÌ ±Ùº»ÀûÀ¸·Î ÆÄ±«µÉ ¼ö ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ :

COVID-19ÀÇ ´ëÀ¯ÇàÀº Å©¶ó¿ìµå¼Ò½Ì ¹è¼Û ¼­ºñ½º ½ÃÀå¿¡ º¯ÇõÀûÀÌ°í º¹ÀâÇÑ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ´çÃÊ ¼¼°è ·Ï´Ù¿î°ú »çȸÀû °Å¸®ÀÇ Àǹ«È­·Î ÀÎÇØ ½Ä·áǰ·ù, ½Äǰ ¹× ±âŸ ÇʼöǰÀÇ ºñÁ¢ÃËÇü ¹è¼Û¿¡ ´ëÇÑ ¼ö¿ä°¡ ±Þ°ÝÈ÷ ±ÞÁõÇß½À´Ï´Ù. ÀÌ·Î ÀÎÇØ Ç÷§ÆûÀº Àü·Ê¾ø´Â ¼ºÀå±â¸¦ ¸ÂÀÌÇÏ¿© »õ·Î¿î ¼ÒºñÀÚ ¿ä±¸¸¦ ÃæÁ·½Ã۱â À§ÇØ ºü¸£°Ô ³×Æ®¿öÅ©¸¦ È®ÀåÇß½À´Ï´Ù. ÆÒµ¥¹ÍÀº º¸´Ù Æø³ÐÀº ÃþÀÇ Åù踦 Á¤»óÈ­½ÃÄÑ ¿µ±¸ÀûÀ̶ó°í »ý°¢µÇ´Â ¼ÒºñÀÚ ÇൿÀÇ º¯È­¸¦ °¡¼ÓÈ­½ÃÄ×½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ¸¶Áö¸· ¸¶ÀÏ µô¸®¹ö¸® ºÎ¹®ÀÌ ÃÖ´ë°¡ µÉ Àü¸Á

¸¶Áö¸· ¸¶ÀÏ µô¸®¹ö¸® ºÐ¾ß´Â µô¸®¹ö¸® ÇÁ·Î¼¼½ºÀÇ ÃÖÁ¾ ´Ü°è¿Í °ü·ÃµÈ ƯÀÌÇÑ º¹À⼺°ú ³ôÀº ºñ¿ëÀ¸·Î ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¸¶Áö¸· ¸¶ÀÏ ¹è¼ÛÀº Àüü ¹è¼Û ºñ¿ëÀÇ »ó´ç ºÎºÐÀ» Â÷ÁöÇϰí ÀÖÀ¸¸ç, ±× È¿À²¼ºÀº °í°´ ¸¸Á·µµÀÇ Áß¿äÇÑ °áÁ¤ ¿äÀÎÀÌ µÇ¾ú½À´Ï´Ù. Å©¶ó¿ìµå¼Ò½Ì ¼­ºñ½º´Â À¯¿¬Çϰí Áö¿ªÀûÀ¸·Î ¹ÐÁ¢ÇÏ°í ¿Âµð¸Çµå ¼Ö·ç¼ÇÀ» Á¦°øÇÔÀ¸·Î½á ±âÁ¸ ¿î¼Û¾÷üº¸´Ù µµ½Ã ȯ°æÀÇ ¹°·ù Àå¾Ö¹°À» ±Øº¹Çϱ⿡ ÀûÇÕÇϸç ÀÌ·¯ÇÑ ¹®Á¦¸¦ ÇØ°áÇÏ´Â µ¶Æ¯ÇÑ ÀÔÀå¿¡ ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ±â¾÷ ´ë ¼ÒºñÀÚ(B2C) ºÎ¹®ÀÌ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ±â¾÷ ´ë ¼ÒºñÀÚ(B2C) ºÎ¹®Àº ¿Â¶óÀÎ ¼Ò¸Å ¹× ¼ÒºñÀÚ Á÷Á¢ ÆÇ¸Å ºê·£µåÀÇ ±ÞÁõ¿¡ ÈûÀÔ¾î °¡Àå ³ôÀº ¼ºÀå·üÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±â¾÷Àº ƯÈ÷ ´ëµµ½Ã Áö¿ª¿¡¼­ ÁÖ¹®À» ºü¸£°í ºñ¿ë È¿À²ÀûÀ¸·Î ó¸®Çϱâ À§ÇØ Å¬¶ó¿ìµå ¼Ò½Ì Ç÷§Æû¿¡ ´ëÇÑ ÀÇÁ¸¼ºÀ» °­È­Çϰí ÀÖ½À´Ï´Ù. B2C ¸ðµ¨Àº ½Ç½Ã°£ ÃßÀû, µ¿Àû °æ·Î ÃÖÀûÈ­ ¹× °í°´ Çǵå¹é ÅëÇÕÀ¸·Î ÀÌÀÍÀ» ¾ò½À´Ï´Ù. ÆíÀǼº°ú ¼Óµµ¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ±â´ë°¡ °è¼Ó Áõ°¡Çϰí ÀÖ´Â °¡¿îµ¥, B2CÀÇ Å¬¶ó¿ìµå ¼Ò½ÌÇü ¹è¼ÛÀº Çö´ëÀÇ ¼Ò¸Å ¹°·ùÀÇ ¿äÁ¡ÀÌ µÇ°í ÀÖ½À´Ï´Ù.

ÃÖ´ë Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª

¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì´Â ¼º¼÷ÇÑ ÀüÀÚ»ó°Å·¡ »ýŰè¿Í Gig Economy PlatformÀÇ ±¤¹üÀ§ÇÑ Ã¤ÅÃÀ¸·Î ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ Áö¿ªÀÇ ´ë±â¾÷Àº ÷´Ü ¸ð¹ÙÀÏ ±â¼ú°ú µ¥ÀÌÅÍ ºÐ¼®À» Áö¿øÇÏ¿© µ¶¸³ ÅÃ¹è ¾÷üÀÇ °ß°íÇÑ ³×Æ®¿öÅ©¸¦ ±¸ÃàÇϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀÇ ÆíÀÇ¿¡ ÁßÁ¡À» µÐ °æÇâÀº ½º¸¶Æ®ÆùÀÇ º¸±Þ·üÀÌ ³ô¾ÆÁü¿¡ µû¶ó Å©¶ó¿ìµå¼Ò½Ì ¹è¼Û ¼­ºñ½º¿¡ À¯¸®ÇÑ È¯°æÀ» ¸¸µé¾î ¿Ô½À´Ï´Ù. ¼Ò¸Å¾÷ü¿Í ¹°·ù½ÅÈï±â¾÷°úÀÇ Àü·«Àû ÆÄÆ®³Ê½ÊÀº ½ÃÀå¿¡¼­ÀÇ Á¸Àç°¨À» ´õ¿í Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù.

°¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµÇ´Â Áö¿ª :

¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº ±Þ¼ÓÇÑ µµ½ÃÈ­, ÀÎÅÍ³Ý Á¢¼Ó È®´ë, ÀüÀÚ»ó°Å·¡ Ȱµ¿ È®´ë¿¡ ÈûÀÔ¾î °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Áß±¹, Àεµ, Àεµ³×½Ã¾Æ µî ±¹°¡¿¡¼­´Â ¿Â¶óÀÎ ¼îÇÎ ºÕÀÌ ÀϾ°í ÀÖÀ¸¸ç, ¹ÎøÇÑ ¹è¼Û ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¾öû³­ ¼ö¿ä°¡ ź»ýÇϰí ÀÖ½À´Ï´Ù. Å©¶ó¿ìµå¼Ò½Ì Ç÷§ÆûÀº ¿ø°ÝÁö¿Í Àα¸¹ÐÁýÁö¿¡¼­µµ È¿À²ÀûÀ¸·Î ¼­ºñ½º¸¦ Á¦°øÇÒ ¼ö Àֱ⠶§¹®¿¡ Àα⸦ ²ø°í ÀÖ½À´Ï´Ù. µðÁöÅÐ ÀÎÇÁ¶ó¿Í ½ÅÈï ±â¾÷ÀÇ Çõ½ÅÀ» ÃËÁøÇÏ´Â Á¤ºÎÀÇ ÀÌ´Ï¼ÅÆ¼ºêµµ ÀÌ Áö¿ªÀÇ ¼ºÀå °¡¼ÓÈ­¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.

¹«·á ¸ÂÃãÇü ¼­ºñ½º

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½ ¹«·á ¸ÂÃã¼³Á¤ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀû ÇÁ·ÎÆÄÀϸµ(3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(3°³»ç±îÁö)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ ÀÀÇÑ ÁÖ¿ä±¹ ½ÃÀå Ã߰衤¿¹Ãø¡¤CAGR(ÁÖ : Ÿ´ç¼º È®Àο¡ µû¸§)
  • °æÀï º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû Á¸Àç, Àü·«Àû Á¦ÈÞ¿¡ ±â¹ÝÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù
  • Á¶»ç ÀÚ·á
    • 1Â÷ Á¶»ç ÀÚ·á
    • 2Â÷ Á¶»ç ÀÚ·á
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ÃÖÁ¾ »ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ±â¾÷ÀÇ Çù»ó·Â
  • ±¸¸ÅÀÚÀÇ Çù»ó·Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô Âü°¡¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷ °£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ Å©¶ó¿ìµå¼Ò½Ì ¹è¼Û ¼­ºñ½º ½ÃÀå : ¹è¼Û À¯Çüº°

  • ¶ó½ºÆ® ¸¶ÀÏ ¹è¼Û
  • ´çÀÏ ¹è¼Û
  • ¿¹¾à ¹è¼Û
  • Ư±Þ ¹è¼Û
  • ±âŸ ¹è¼Û À¯Çü

Á¦6Àå ¼¼°èÀÇ Å©¶ó¿ìµå¼Ò½Ì ¹è¼Û ¼­ºñ½º ½ÃÀå : ºñÁî´Ï½º ¸ðµ¨º°

  • ±â¾÷ °£ °Å·¡(B2B)
  • ±â¾÷ ´ë ¼ÒºñÀÚ(B2C)
  • ¼ÒºñÀÚ ´ë ¼ÒºñÀÚ(C2C)

Á¦7Àå ¼¼°èÀÇ Å©¶ó¿ìµå¼Ò½Ì ¹è¼Û ¼­ºñ½º ½ÃÀå : ¼­ºñ½º À¯Çüº°

  • ¿Âµð¸Çµå ¹è¼Û
  • Á¤±â ¹è¼Û
  • ±¸µ¶ ±â¹Ý ¹è¼Û
  • Ŭ¶ó¿ìµå ¹è¼Û ³×Æ®¿öÅ©
  • ·ÎÄ¿ ±â¹Ý ¼Ö·ç¼Ç

Á¦8Àå ¼¼°èÀÇ Å©¶ó¿ìµå¼Ò½Ì ¹è¼Û ¼­ºñ½º ½ÃÀå : Ç÷§Æû À¯Çüº°

  • ¸ð¹ÙÀÏ ¾ÖÇø®ÄÉÀ̼Ç
  • À¥ ±â¹Ý Ç÷§Æû

Á¦9Àå ¼¼°èÀÇ Å©¶ó¿ìµå¼Ò½Ì ¹è¼Û ¼­ºñ½º ½ÃÀå : Â÷·® À¯Çüº°

  • ÀÌ·ûÂ÷
  • »ç·ûÂ÷
  • µå·Ð ¹× ÀÚÀ²ÁÖÇàÂ÷
  • ±âŸ Â÷·® À¯Çü

Á¦10Àå ¼¼°èÀÇ Å©¶ó¿ìµå¼Ò½Ì ¹è¼Û ¼­ºñ½º ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

  • ¼Ò¸Å
  • ÀüÀÚ»ó°Å·¡
  • ½ÄÀ½·á
  • ÇコÄÉ¾î ¹× Á¦¾à
  • ½Ä·áǰ
  • ±âŸ ÃÖÁ¾ »ç¿ëÀÚ

Á¦11Àå ¼¼°èÀÇ Å©¶ó¿ìµå¼Ò½Ì ¹è¼Û ¼­ºñ½º ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦12Àå ÁÖ¿ä ¹ßÀü

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷, ÇÕÀÛÅõÀÚ
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦13Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • Uber Eats
  • DoorDash
  • Postmates
  • Amazon Flex
  • Instacart
  • Deliveroo
  • GoShare
  • Veho
  • Shadowfax
  • Dunzo
  • Swiggy Genie
  • MAX.ng
  • Roadie
  • Shipt
  • Lalamove
  • Stuart
  • XpressBees
KTH 25.09.01

According to Stratistics MRC, the Global Crowdsourced Delivery Service Market is accounted for $23.3 billion in 2025 and is expected to reach $49.8 billion by 2032 growing at a CAGR of 11.4% during the forecast period. Crowdsourced delivery service leverages a network of independent, often non-professional couriers to fulfill delivery tasks using their personal vehicles or resources. Coordinated through digital platforms, this model enables flexible, on-demand logistics by connecting businesses or individuals with available drivers in real time. It offers cost-effective and scalable solutions for last-mile delivery, especially in urban areas. Crowdsourced delivery enhances efficiency, reduces operational overhead, and supports rapid fulfillment, making it ideal for e-commerce, food delivery, and same-day shipping needs.

According to Journal of Business Logistics, analysis of 98,134 customer reviews spanning from January 2016 to August 2021 revealed that crowdsourced delivery offerings significantly improved customer satisfaction in terms of on-time delivery, reliability, and perceived price value, especially for convenience goods like groceries and office supplies.

Market Dynamics:

Driver:

Rapid e commerce growth & consumer demand

As online shopping continues to grow, consumers now expect not just next-day, but often same-day and instant delivery for a wide range of goods. This expectation creates a critical need for flexible and scalable logistics solutions that traditional delivery models struggle to provide, especially in urban centers. Crowdsourced delivery services, by leveraging a network of local, independent couriers, are perfectly positioned to meet this demand, offering businesses a dynamic and cost-effective way to fulfill orders quickly and stay competitive in the fast-paced online retail landscape.

Restraint:

Quality control and inconsistent service

Since drivers are often gig workers with varying levels of experience, issues such as delayed deliveries, mishandling of packages and poor customer interactions can arise. The lack of standardized training and oversight complicates efforts to ensure reliability. Additionally, fluctuating availability of drivers during off-peak hours or adverse weather conditions can disrupt operations, impacting customer satisfaction and brand reputation.

Opportunity:

Last-mile delivery and urban logistics

In dense urban environments, traditional logistics providers face significant hurdles such as traffic congestion, parking difficulties, and fragmented delivery routes. The crowdsourced model, however, can bypass these challenges by utilizing a network of local couriers who are familiar with the area and can use a variety of transportation methods, from cars and scooters to bicycles. This approach makes last-mile delivery more efficient, cost-effective, and environmentally friendly, presenting a significant growth opportunity as urbanization continues to accelerate globally.

Threat:

Substitute technologies & regulatory backlash

The development of delivery drones, autonomous vehicles, and last-mile robots has the potential to eliminate the need for human couriers for certain types of deliveries, particularly in urban and suburban areas. Simultaneously, the market is under threat from regulatory scrutiny and potential legal backlash. The legal classification of crowdsourced couriers as independent contractors, rather than employees, is being challenged in many regions which could drastically increase operational costs and fundamentally disrupt the crowdsourced business model.

Covid-19 Impact:

The COVID-19 pandemic had a transformative and complex impact on the crowdsourced delivery service market. Initially, the global lockdowns and social distancing mandates caused a dramatic surge in demand for contactless delivery of groceries, food, and other essential goods. This led to a period of unprecedented growth for platforms, which rapidly expanded their networks to meet the new consumer needs. The pandemic normalized home delivery for a wider demographic, accelerating a shift in consumer behavior that is likely to be permanent.

The last-mile delivery segment is expected to be the largest during the forecast period

The last-mile delivery segment is expected to account for the largest market share during the forecast period due to the inherent complexity and high cost associated with the final stage of the delivery process. Last-mile delivery accounts for a substantial portion of total shipping costs, and its efficiency is a key determinant of customer satisfaction. Crowdsourced services are uniquely positioned to address these challenges by providing flexible, localized, and on-demand solutions that are better suited to navigate the logistical hurdles of urban environments than traditional carriers.

The business-to-consumer (B2C) segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the business-to-consumer (B2C) segment is predicted to witness the highest growth rate fueled by the surge in online retail and direct-to-consumer brands. Companies are increasingly relying on crowdsourced platforms to fulfill orders quickly and cost-effectively, especially in metropolitan regions. The B2C model benefits from real-time tracking, dynamic route optimization, and customer feedback integration. As consumer expectations for convenience and speed continue to rise, B2C crowdsourced delivery is becoming a cornerstone of modern retail logistics.

Region with largest share:

During the forecast period, the North America region is expected to hold the largest market share driven by its mature e-commerce ecosystem and widespread adoption of gig economy platforms. Major players in the region have established robust networks of independent couriers, supported by advanced mobile technologies and data analytics. The region's emphasis on convenience, coupled with high smartphone penetration, has created a favorable environment for crowdsourced delivery services. Strategic partnerships between retailers and logistics startups are further strengthening market presence.

Region with highest CAGR:

Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR supported by rapid urbanization, growing internet access, and expanding e-commerce activity. Countries like China, India, and Indonesia are witnessing a boom in online shopping, creating immense demand for agile delivery solutions. Crowdsourced platforms are gaining traction due to their ability to serve remote and densely populated areas efficiently. Government initiatives promoting digital infrastructure and startup innovation are also contributing to the region's accelerated growth.

Key players in the market

Some of the key players in Crowdsourced Delivery Service Market include Uber Eats, DoorDash, Postmates, Amazon Flex, Instacart, Deliveroo, GoShare, Veho, Shadowfax, Dunzo, Swiggy Genie, MAX.ng, Roadie, Shipt, Lalamove, Stuart, and XpressBees.

Key Developments:

In July 2025, Uber Eats expanded its grocery delivery offerings by partnering with local favorites such as Big Y, King Kullen, Foxtrot, Lunds & Byerlys, Superlo Foods, and Vallarta Supermarkets. This enhances localized access to fresh groceries for customers across various U.S. regions.

In May 2025, Swiggy's quick-delivery platform, Bolt, now operates in over 500 cities across India, serving more than 10% of all Swiggy food orders in real-time. The rollout underscores growing demand for rapid delivery, particularly in Tier 2 and Tier 3 markets.

In May 2025, Uber acquired an 85% stake in Trendyol Go for approximately $700 million, marking its first direct entry into Turkey's food and grocery delivery sector. This move gives Uber Eats a strong local foothold in a key emerging market.

Delivery Types Covered:

  • Last-Mile Delivery
  • Same-Day Delivery
  • Scheduled Delivery
  • Express Delivery
  • Other Delivery Types

Business Models Covered:

  • Business-to-Business (B2B)
  • Business-to-Consumer (B2C)
  • Consumer-to-Consumer (C2C)

Service Types Covered:

  • On-Demand Delivery
  • Scheduled Delivery
  • Subscription-Based Delivery
  • Crowdshipping Networks
  • Locker-Based Solutions

Platform Types Covered:

  • Mobile Application
  • Web-Based Platform

Vehicle Types Covered:

  • Two-Wheelers
  • Four-Wheelers
  • Drones & Autonomous Vehicles
  • Other Vehicle Types

End Users Covered:

  • Retail
  • E-commerce
  • Food & Beverages
  • Healthcare & Pharmaceuticals
  • Groceries
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 End User Analysis
  • 3.7 Emerging Markets
  • 3.8 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Crowdsourced Delivery Service Market, By Delivery Type

  • 5.1 Introduction
  • 5.2 Last-Mile Delivery
  • 5.3 Same-Day Delivery
  • 5.4 Scheduled Delivery
  • 5.5 Express Delivery
  • 5.6 Other Delivery Types

6 Global Crowdsourced Delivery Service Market, By Business Model

  • 6.1 Introduction
  • 6.2 Business-to-Business (B2B)
  • 6.3 Business-to-Consumer (B2C)
  • 6.4 Consumer-to-Consumer (C2C)

7 Global Crowdsourced Delivery Service Market, By Service Type

  • 7.1 Introduction
  • 7.2 On-Demand Delivery
  • 7.3 Scheduled Delivery
  • 7.4 Subscription-Based Delivery
  • 7.5 Crowdshipping Networks
  • 7.6 Locker-Based Solutions

8 Global Crowdsourced Delivery Service Market, By Platform Type

  • 8.1 Introduction
  • 8.2 Mobile Application
  • 8.3 Web-Based Platform

9 Global Crowdsourced Delivery Service Market, By Vehicle Type

  • 9.1 Introduction
  • 9.2 Two-Wheelers
  • 9.3 Four-Wheelers
  • 9.4 Drones & Autonomous Vehicles
  • 9.5 Other Vehicle Types

10 Global Crowdsourced Delivery Service Market, By End User

  • 10.1 Introduction
  • 10.2 Retail
  • 10.3 E-commerce
  • 10.4 Food & Beverages
  • 10.5 Healthcare & Pharmaceuticals
  • 10.6 Groceries
  • 10.7 Other End Users

11 Global Crowdsourced Delivery Service Market, By Geography

  • 11.1 Introduction
  • 11.2 North America
    • 11.2.1 US
    • 11.2.2 Canada
    • 11.2.3 Mexico
  • 11.3 Europe
    • 11.3.1 Germany
    • 11.3.2 UK
    • 11.3.3 Italy
    • 11.3.4 France
    • 11.3.5 Spain
    • 11.3.6 Rest of Europe
  • 11.4 Asia Pacific
    • 11.4.1 Japan
    • 11.4.2 China
    • 11.4.3 India
    • 11.4.4 Australia
    • 11.4.5 New Zealand
    • 11.4.6 South Korea
    • 11.4.7 Rest of Asia Pacific
  • 11.5 South America
    • 11.5.1 Argentina
    • 11.5.2 Brazil
    • 11.5.3 Chile
    • 11.5.4 Rest of South America
  • 11.6 Middle East & Africa
    • 11.6.1 Saudi Arabia
    • 11.6.2 UAE
    • 11.6.3 Qatar
    • 11.6.4 South Africa
    • 11.6.5 Rest of Middle East & Africa

12 Key Developments

  • 12.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 12.2 Acquisitions & Mergers
  • 12.3 New Product Launch
  • 12.4 Expansions
  • 12.5 Other Key Strategies

13 Company Profiling

  • 13.1 Uber Eats
  • 13.2 DoorDash
  • 13.3 Postmates
  • 13.4 Amazon Flex
  • 13.5 Instacart
  • 13.6 Deliveroo
  • 13.7 GoShare
  • 13.8 Veho
  • 13.9 Shadowfax
  • 13.10 Dunzo
  • 13.11 Swiggy Genie
  • 13.12 MAX.ng
  • 13.13 Roadie
  • 13.14 Shipt
  • 13.15 Lalamove
  • 13.16 Stuart
  • 13.17 XpressBees
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦